Primary PL-Relation Calibrators in the Milky Way: Cepheids and RR Lyrae

Physical basis, Calibration, and Applications

Martin Groenewegen

Royal Observatory of Belgium/Koninklijke Sterrenwacht van België, Brussels (martin.groenewegen@oma.be)

Overview Talk

- Introduction
 - Hipparcos and beyond
- PL-relation: Application
 - Galactic Structure
- PL-relation: Calibration
 - Distance scale
 Cepheids in Clusters
 Reddening
- Concluding remarks

When it all started

Leavitt & Pickering (1912) (Leavitt 1908)

 $\Delta \log P/M = 0.48$

 $M = (-2.02 \pm 0.10) \log P + (16.16 \pm 0.10)$

Hipparcos

Feast & Catchpole (1997, MN 286) 220 classical Cepheids $M_{\rm V} = -2.81 \log P + (-1.43 \pm 0.10) \Rightarrow$ DM= 18.70 ± 0.10 ONLY Polaris (FO), -1.41 ± 0.14

Madore & Freedman (1998, ApJ 492) BVIJKH 7-19 stars \Rightarrow DM= 18.44 \pm 0.45 to 18.57 \pm 0.11

van Leeuwen, Feast, Whitelock & Laney (2007, MN 379) $M_{\rm K} = -3.258 \log P + (-2.40 \pm 0.05) \Rightarrow$ DM= 18.47 ± 0.03

Gratton (1998, MN 296) 3 RR Lyrae, 9 RHB, 10 BHB $M_{\rm V} = (0.22 \pm 0.22) \cdot ([{\rm Fe}/{\rm H}] + 1.5) + (0.66 \pm 0.11)$

post-Hipparcos, pre-Gaia

FGS/HST: Benedict et al. (2002 AJ 123; 2007 AJ 133; 2011 AJ 142) Benedict et al. (2017, PASP 129): 105 objects with FGS WFC/HST: Riess et al. (2014, ApJ 785; 2018, ApJ 855)

Fouqué et al. (2007, A&A 476) CEP PL-relations in 9 bands using 59 calibrators (FGS/HST, rev. Hipparcos, Baade-Wesselink method, Clusters [ZAMS fitting]) $W_{VI} = (-3.477 \pm 0.074) \log P + (-2.414 \pm 0.032)$ $W_{K} = (-3.365 \pm 0.063) \log P + (-2.282 \pm 0.019)$ Benedict et al. (2011) for RRL $M_{V} = (0.214 \pm 0.047)([Fe/H] + 1.5) + (0.45 \pm 0.05)$ $M_{K} = (-2.11 \pm 0.17)(\log P + 0.28) + (0.05 \pm 0.07)([Fe/H] + 1.58)$ $+(-0.56 \pm 0.03)$

Photometric surveys

Gaia DR3: Clementini et al. (arXiv220606278) 270 900 RRL (70 600 new; 234 700 not in directions MCs; 96 GCC) Ripepi et al. (arXiv220606212) 15 000 of ALL types (3300 DCEP, not in direction MCs/M31/M33)

OGLE:

78 000 RR Lyrae Stars Galactic Bulge and Disk Fields (Soszyński et al. 2019, AcA 69)

1370 BLG+330 GD T2C (Soszyński et al. 2020, AcA 70)

Photometric surveys

VVV/VVX: RRL: Contreras Ramos et al. (2018, ApJ 863), Dékány et al. (2018, ApJ 857), Majaess et al. (2018, Ap&SS 363) T2C: Braga et al. (2018, A&A 619; 2019, A&A 625) Machine Learning: Molnar et al. (2022, MN 509) analysed 490 million VVV LCs \Rightarrow 1.4 million likely variables; 39 000 are RRab stars, 8000 RRcd, 187 000 (s)dEBs, 18 000 contact EBs, 1400 DCEP, 2200 T2C

WISE - ASAS - ASASSN - ZTF - Catalina Sky Surveys

Pietrukowicz (2021, AcA 71) List of Galactic Cepheids: 3666 (version Sept. 2022)

Majaess et al. (2018,Ap&SS 363) 4194 RRab from VVV $M_{\rm K} =$ $(-2.66\pm0.06)\log P - (1.03\pm$ (0.06) [DM_{LMC}=18.43] $(J - K)_0 = (0.31 \pm$ $(0.04) \log P + (0.35 \pm 0.02)$ $d_{\rm GC} = 8.30 \pm 0.36 \ (\mid b \mid > 4^{\circ})$

Using T2C from VVV: Braga et al. (2018, A&A 619) Griv et al. (2020, A&A 499)

$$d_{\rm GC} = 8.46 \pm 0.11 \text{ kpc}$$

 $d_{\rm GC} = 8.28 \pm 0.14 \text{ kpc}$

Pietrukowicz et al. (2020, AcA 70) OGLE 56 000 GB/GD + 34 000 MCs RRab photometric metallicities halo/bulge/disk [Fe/H]=-1.2,-1.0,-0.6 1/3 RRL within Bulge area belong

to the Halo.

Li et al. (2023, ApJ 944) Calibrate: P - f31 - R21 - [Fe/H] (RRab, RRc, #2700) $M_{\rm G} - [Fe/H]$ (#200)

Apply to: 115 410 RRab and 20 463 type RRc stars

Minniti et al. (2021, A&A 654) 50 CCs from VVV in quadrants I and IV

$$\ln\left(R/R_{\rm ref}\right) = -\left(\beta - \beta_{\rm ref}\right)\tan\psi$$

Talk Thurday

Ablimit et al. (2020, ApJL 895) 3480 CCs, distances based on *Wise* PL-relations 1040 PM from GDR2, RV from GDR2/LAMOST

Also: Bobylev, Bajkova, et al. (2021, MNRAS 502; 2023, BAA 23)

Lemasle et al. (2022, A&A 668) unWISE photometry for 3260 MW CCs $W,W1W2 = W2 - 2.0 \cdot (W1 - W2)$ $M_{W,W1W2} = (-2.436 \pm 0.013) \log P + (-3.196 \pm 0.019)$ $z(r,\Theta) = \begin{cases} z_0 \\ z_0 + (r - r_0)^2 \times [z_1 \sin(\Theta - \Theta_1) + z_2 \sin(2(\Theta - \Theta_2))] & r \ge r_0 \end{cases}$ Z [kpc]

Y kpc

r:

10

15

20

Also: Chen et al. (2019, Nature Ast 3) Kovtyukh et al. (2022, MNRAS 510)

-5

-20

-15

-10

Trentin et al. (2023, MNRAS 519) 637 CCs, $M_{W,G}$ relation $(-0.060 \pm 0.002) \cdot R_{GC} + (0.573 \pm 0.017) \text{ dex } (R_{GC} > 4 \text{ kpc}).$ Possible break at 9.25 kpc (Talk: +3)

Also:

Lemasle et al. (2022, A&A 668) Hocdé et al. (2023, A&A 671) (Talk: Thursday)

Calibration

 $M - m_0 = 5 \log(d/10 \text{ [pc]})$ M = F(P, [Fe/H]) $\omega = 10^{0.2(m_0 - F - 5)}$

• $\omega_{\rm G}$ - PZPO DR2: -29 μ as (QSOs), -46 ± 13 (Riess+ 2018), -49 ± 18 (Gr18) (CEP) -56 (Murareva+ 2018), -42 (Layden+ 2019) (RRL)

```
DR3: -17 \muas (QSOs)
Lindegren et al. (2021; L21)
Maíz Apellániz (2022, A&A 657)
Groenewegen (2021, A&A 654)
```

• $\omega_{\rm G}$ - PZPO + $\Delta \omega$

$\textbf{Hipparcos} \Rightarrow \textbf{HST} \Rightarrow \textbf{GDR3}$

Benedict et al. (2007 AJ 133; 2022 AJ 163) Riess et al. (2014, ApJ 785; 2018, ApJ 855)

Name	$\pi \pm \sigma_{\pi}$	$\pi \pm \sigma_{\pi}$	$\pi \pm \sigma_{\pi}$	GoF
	(rev. Hipparcos)	(HST)	(GDR3)	
η Aql	2.36 ± 1.04	3.71 ± 0.07	3.67 ± 0.19	29
β Dor	3.24 ± 0.36	3.14 ± 0.16	2.93 ± 0.14	47
δ Cep	3.77 ± 0.17	3.66 ± 0.15	3.56 ± 0.15	31
FF Aql	2.11 ± 0.33	$\textbf{2.81} \pm \textbf{0.18}$	1.91 ± 0.07	1.5
<i>l</i> Car	2.09 ± 0.29	2.01 ± 0.20	1.98 ± 0.11	24
RT Aur	-1.10 ± 1.41	2.40 ± 0.19	1.81 ± 0.12	66
T Vul	2.71 ± 0.43	1.90 ± 0.23	1.69 ± 0.06	5.3
Y Sgr	2.64 ± 0.45	$\textbf{2.13} \pm \textbf{0.29}$	1.97 ± 0.06	13
X Sgr	3.31 ± 0.26	3.00 ± 0.18	2.81 ± 0.14	5.1
ζ Gem	2.37 ± 0.30	$\textbf{2.78} \pm \textbf{0.18}$	3.07 ± 0.22	22
W Sgr	3.75 ± 1.12	$\textbf{2.28} \pm \textbf{0.20}$	2.37 ± 0.18	36
SY Aur	-1.84 ± 1.72	0.428 ± 0.054	0.427 ± 0.020	2.5
SS CMa	0.40 ± 1.78	0.389 ± 0.029	0.287 ± 0.013	4.0
XY Car	-1.02 ± 0.88	0.438 ± 0.048	0.378 ± 0.014	2.1
VX Per	0.87 ± 1.52	0.420 ± 0.076	0.364 ± 0.017	3.5
VY Car	0.36 ± 1.42	0.586 ± 0.045	0.554 ± 0.017	-2.4
WZ Sgr	3.50 ± 1.22	0.512 ± 0.039	0.574 ± 0.028	-1.1
S Vul		0.322 ± 0.040	0.205 ± 0.020	1.1
X Pup	1.97 ± 1.26	0.277 ± 0.048	0.376 ± 0.020	1.2

$\textbf{Hipparcos} \Rightarrow \textbf{HST} \Rightarrow \textbf{GDR3}$

Benedict et al. (2011 AJ 142)

Name	Туре	$\pi \pm \sigma_{\pi}$	$\pi \pm \sigma_{\pi}$	$\pi \pm \sigma_{\pi}$	GoF
		(rev. Hipparcos)	(HST)	(GDR3)	
SU Dra	RRab	0.20 ± 1.13	1.42 ± 0.16	1.332 ± 0.014	0.4
RR Lyr	RRab	3.46 ± 0.64	3.77 ± 0.13	3.985 ± 0.027	0.9
UV Oct	RRab	$\textbf{2.44} \pm \textbf{0.81}$	1.71 ± 0.10	1.838 ± 0.012	0.0
XZ Cyg	RRab	$\textbf{2.29} \pm \textbf{0.84}$	1.67 ± 0.17	1.586 ± 0.015	4.1
RZ Cep	RRc	0.59 ± 1.48	$\textbf{2.54} \pm \textbf{0.19}$	2.401 ± 0.012	-0.3
VY Pyx	BL Her	5.01 ± 0.44	6.44 ± 0.23	3.950 ± 0.019	-3.6
κ Pav	W Vir	6.52 ± 0.77	5.57 ± 0.28	5.245 ± 0.122	38

Proxys

• Cepheids with Companions Polaris A: Hipparcos revised parallax 7.54 ± 0.11 mas Polaris B: GDR3 7.287 ± 0.018

Kervella et al. (2019) "proper motion anomaly"

• Cepheids in Clusters

Breuval et al. 2020, A&A 643 22 spatially resolved companions + 14 Cepheids that are candidate cluster members DR2 + offset

α	eta	σ	Band	
-2.481 ± 0.244	-3.731 ±0.050	0.18	V	-46 mas
-3.257 ± 0.163	-5.323 ± 0.026	0.14	K	-46 mas
-3.332 ± 0.177	-5.965 ±0.029	0.17	WH(T)	-46 mas
-3.340 ± 0.180	-6.010 ± 0.030	0.16	WH(T)	-31 mas
-3.322 ± 0.175	-5.904 ± 0.029	0.18	WH(T)	-61 mas

Cepheids in Open Clusters

- Zhou & Chen 2021, MNRAS 504
 33 Cepheids in OCs (DR2/3)
 Medina et al. 2021, MNRAS 505
 19 Cepheids in OCs (DR2)
- Riess et al. (2022, ApJ 938)
 17 Cepheids, HST photometry
 DR2 membership (Cantat-Gaudin et al. 2020)
- Hao et al. (2022, A&A 668)
 39 "probable" Cepheids in OCs, DR3 Lin et al. (2022, ApJ 938), DR2 + DR3.
- Cruz Reyes & Anderson (arXiv:2208.09403)
 34 Cepheids in 28 OCs, DR3 (Talk: +2)
- Groenewegen (this work)

Cluster Cepheids

Cluster	$\pi \pm \sigma_{\pi}$	$\pi \pm \sigma_{\pi}$	$\pi \pm \sigma_{\pi}$	$\pi \pm \sigma_{\pi}$	Ν	R
	(Riess+)	(Cruz-Reys+)	(Hao+)	(Gr23)		(′)
Berkeley 58	336 ± 8	336 ± 7	290 ± 20	302 ± 11	85	4.0
NGC 129	559 ± 7	557 ± 7	530 ± 30	529 ± 10	290	6.5
FSR 0951	594 ± 7	610 ± 7	570 ± 30	566 ± 11	128	6.8
vdBergh 1	579 ± 10	585 ± 10	550 ± 40	543 ± 13	50	1.9
Ruprecht 79	274 ± 8	281 ± 7	240 ± 20	244 ± 11	99	2.8
NGC 5662	1322 ± 7	1336 ± 6	1300 ± 30	1292 ± 12	225	18.1
Lynga 6	408 ± 9	421 ± 8	380 ± 40	383 ± 11	157	5.2
NGČ 6067	496 ± 7	513 ± 7	470 ± 30	473 ± 11	671	4.5
NGC 6087	1057 ± 7	1073 ± 7	1020 ± 30	1025 ± 11	154	7.7
IC 4725	1540 ± 7	1554 ± 6	1520 ± 50	1514 ± 12	325	11.6
NGC 6649	508 ± 8	514 ± 7	470 ± 50	474 ± 11	301	3.1
UBC 129	886 ± 7	880 ± 7	850 ± 20	852 ± 11	116	11.7
UBC 130	428 ± 8	425 ± 9	400 ± 20	396 ± 11	36	2.4
NGC 7790	331 ± 8	$\textbf{322}\pm\textbf{7}$	290 ± 30	293 ± 11	114	3.0
UBC 231	356 ± 8	345 ± 8		312 ± 11	56	7.9
$\int OC - 0717$			370 ± 10	370 ± 10	64	24.4
∫ NGC 3496	439 ± 8			408 ± 10	464	7.6
\int Ruprecht 93	3	482 ± 7		$448\pm$ 11	169	4.7

Spatial covariance !

PL-relations: CEP

	$M = \alpha \cdot (\log P - c) + \beta + \gamma \cdot [Fe/H]$							
	lpha	eta	γ	Band	GAL	Ν	σ	remark
			Ripepi et al. (arXiv	2206062	212)			
-6	3.317 ± 0.007	15.998 ± 0.005	0.0	WG	LMC	2477	0.075	
-:	3.382 ± 0.021	16.592 ± 0.026	0.0	WG	SMC	839	0.156	P > 2.95d
		Ripepi e	t al. 2022 A&A 659); DR3, L	21+Riess	21		
-8	3.294 ± 0.040	-6.042 ± 0.013	0.0	WG	MW	372	0.017	
-:	3.178 ± 0.048	-5.971 ±0.017	-0.661 ± 0.077	WG	MW	372	0.011	
		Molinari et al	. 2023 MNRAS 52	0; DR3, I	L21 + fitte	d offse	et	
-:	3.167 ± 0.053	-5.887 ± 0.035	-0.43 ± 0.12	K	MW	443	0.017	-24.8 \pm 4.6 μ
-8	3.333 ± 0.057	-6.178 ±0.038	-0.40 ± 0.12	WJK	MW	443	0.017	$-21.9\pm5.0~\mu$
-8	3.191 ± 0.042	-6.018 ± 0.028	-0.32 ± 0.10	WH(T)	MW	430	0.016	-23.6 \pm 4.1 μ
	Breuval et a	I. 2022, ApJ 939	; BJ21+correction	(L21+Ri	ess21) [1() band	s+ 5 V	Vesenheit]
-3.	$222F(\pm 0.013)$	-5.899 ± 0.033		΄ Κ	ŃW	65	0.17	-
-3.	$222F(\pm 0.013)$	-5.827 ± 0.034	-0.321 ± 0.068	K	MCs/MW	2017	0.034	
-3.	$338F(\pm 0.012)$	-6.006 ±0.021		WG	MW	596	0.32	
-3.	$338F(\pm 0.012)$	-5.959 ±0.021	-0.384 ± 0.051	WG	MCs/MW	2473	0.025	
-3.	$323F(\pm 0.009)$	-6.184 ±0.038		WJK	MW	63	0.18	
-3.	$323F(\pm 0.009)$	-6.133 ±0.042	-0.322 ± 0.079	WJK	MCs/MW	2014	0.042	
-3.	$305F(\pm 0.038)$	-5.955 ± 0.024		WH	MW	60	0.16	
-3.	$305F(\pm 0.038)$	-5.931 ±0.027	-0.280 ± 0.078	WH	LMC/MW	130	0.027	
		Riess et a	al. 2022, ApJ 938;	MW Clus	ster Cephe	eids		
-3.	$299F(\pm 0.015)$	-5.890 ± 0.018	$-0.217F(\pm 0.046)$	WH	ŃW	17	0.06	$0F~\mu$ as
	Cruz R	eyes & Andersor	n 2023, arXiv:2208	.09403; I	NW Cluste	er+Fie	ld Cep	heids
-3.	$299F(\pm 0.015)$	-5.914 ±0.017	$-0.217F(\pm 0.046)$	WH	MW	82	•	$-13\pm5~\mu {\rm as}$

PL-relations: RRL

$M = \alpha \cdot (\log P - c) + \beta + \gamma \cdot [Fe/H]$							
lpha	eta	γ	Band	GAL	Ν	σ	Remark
	Bhardwaj et al.	2023, ApJL 944	; DR3,	L21 (Talk	Thurda	ay)	
-2.37 ± 0.02	-0.80 ± 0.03	0.18 ± 0.01	K	MW/GC	1077	0.05	RRabcd
-2.73 ± 0.02	-1.06 ± 0.03	0.16 ± 0.02	WJK	MW/GC	1096	0.06	
	Garofalo et al.	2022, MNRAS 5	513; DF	R3, fit glob	al offs	et	
	1.13 ± 0.03	0.33 ± 0.02	V	MW	400	0.02	-33 ± 2 mas
-2.49 ± 0.21	-0.88 ± 0.09	0.14 ± 0.03	WG	MW	400	0.09	-33 ± 3 mas
Looij	mans, Lub, Brow	n 2023, arXiv: 2	303.03	32; DR3,	fit glob	al offs	set
$+0.393 \pm 0.049$	-0.45 ±0.10	0.273 ± 0.022	V	MW/GC	200		-14 ± 9 mas
$-2.48\pm0.07^{\star}$	-0.93 ± 0.02	0.121 ± 0.010	WG	MW/GC	200		-8 ± 3 mas
	Mullen et al.	2023 ApJ945; D	R3, L2	1+ error ir	nflation		
-2.44 ± 0.10	-0.841 ±0.008	0.144 ± 0.014	W1	MW/GC	1052	0.02	
-2.54 ± 0.10	-0.857 ± 0.009	0.151 ± 0.014	W2	MW/GC	397	0.02	
l	i, Huang et al. 2	023, ApJ 944; D	R3, L2	1+Bayesia	anEstir	nate	
	$+1.106 \pm 0.021$	0.350 ± 0.016	G	МW	205	0.12	RRab
-2.465 ± 0.084	-0.792 ± 0.043	0.161 ± 0.011	K	MW	159	0.14	
-2.452 ± 0.080	-0.834 ± 0.031	0.179 ± 0.011	W1	MW	164	0.09	
Neeley et al. 2019, MN 490; DR2, -30 mas							
-2.40 ± 0.27	-0.87 ± 0.02	0.18 ± 0.03	[3.6]	MW	55	0.21	
-2.45 ± 0.28	-0.89 ± 0.02	0.18 ± 0.03	[4.5]	MW	55	0.21	
-2.60 ± 0.25	-1.01 ± 0.02	0.13 ± 0.04	ŴVĪ	MW	55	0.18	
*used $WG = G$ -	-1.85(Bp - Rp)						

Counter correction

Reddening

Fitzpatrick (1999); Cardelli, Clayton, & Mathis (1989) Wang & Chen (2019 ApJ 877; arXiv230109146)

			$A_{\lambda}/A_{\rm V}$	
Filter	λ_0	F99	CCM	WC
		$R_{\rm V} = 3.3$	$R_{\rm V} = 3.1$	$R_{\rm V} = 3.4$
B'	4354	1.303	1.341	1.295
'V'	5414	1.000	1.017	1.019
I(ogle-iv)	7930	0.571	0.607	0.581
J(2mass)	12350	0.262	0.335	0.304
Ĥ	16620	0.162	0.178	0.135
$K_{ m s}$	21590	0.112	0.117	0.079
F555W	5350	1.024	1.032	1.034
F814W	8090	0.548	0.584	0.562
F160W	15330	0.184	0.203	0.160
WVI		1.33	1.54	1.32
WJK		0.74	0.54	0.35
WH		0.386	0.454	0.338
$\frac{E(V-I)}{E(B-V)}$		1.415	1.270	1.491

Reddening

Filter	mag		m_0				
		F99, $R_{\rm V} = 3.3$	CCM, $R_{\rm V} = 3.1$	WC, $R_{\rm V} = 3.4$			
		E(B-V) = 1.0	E(B-V) = 1.0	E(B-V) = 0.15			
\overline{V}	11.511	8.211	8.411	11.001			
Ι	10.007	8.123	8.125	9.697			
J	8.846	7.981	7.808	8.675			
H	8.188	7.653	7.636	8.097			
$K_{\mathbf{s}}$	8.058	7.688	7.695	7.998			
F555W	11.750	8.371	8.551	11.224			
F814W	9.973	8.165	8.163	9.675			
F160W	8.384	7.777	7.755	8.280			
WVI	8.007	8.005	7.745	7.964			
WJK	7.475	7.472	7.612	7.497			
WH	7.698	7.698	7.604	7.682			
$\overline{WVI = I - 1.55 \cdot (V - I)},$							
$WJK = K - 0.69 \cdot (J - K),$							
$WH = F160W - 0.386 \cdot (F555W - F814W).$							

Conclusions

Consensus on metallicity dependence Cepheid PL-relation

All PL-relations in practical use show no 'break'

Wesenheit indices

Spectroscopic surveys (Opt, NIR)

Binarity

Karczmarek (2204.00661, 2303.15664)

-No effect on slope

-Small effect on ZP (depends on filter and binary fraction)

NIR excess

(dust?; ionized gas? Hocdé et al. 2020 A&A 633)

PZPO. Large 'counter-corrections' (DR4)

THE END