MESS - Mass loss of Evolved StarS An overview

Martin Groenewegen marting@oma.be

on behalf of the MESS consortium www.univie.ac.at/space/MESS (consortium website)

Vienna, 20 August 2010 – p.1/29

Herschel - Planck launch 14 May 2009

Vienna, 20 August 2010 – p.2/29

3.3m effective diameter3 year of Routine Phase starting Dec. 2009

Herschel instruments

PACS - SPIRE - HIFI

FWHM: 5.6, 6.8, 11.4 (PACS), 18.1, 25.2, 36.6" (SPIRE)

Evolved stars Key Programs

MESS (Mass loss of Evolved StarS) - PACS + SPIRE HIFISTARS - HIFI (PI. Valentin Bujarrabal)

PACS (50-200 μ m) SPIRE (200-650 μ m) both have bolometer arrays (FOV of a few arcmin) both have a spectrometer (R= 1000-2000)

MESS First Results 8 papers in the A&A Volume 518 Special Issue + 1 Nature paper accepted

MESS

This GT KP aims at studying the circumstellar matter in evolved objects

• AGB, Post-AGB, PNe, RSG, WR, LBV, SN

- Photometric mapping of nearby objects
- Spectroscopy of nearby objects
- SPIRE and PACS
- Mass-loss dominates the evolution How? How much? Time evolution? Spherical? Production of dust

Fig. 1. 90 μ m image of Y CVn taken with PHT-CI 00 array detector and C90 filter displayed in linear brightness scale.

Fig. 2. 160 µm image of Y CVn taken with PHT-C200 array detector and C160 filter displayed in linear brightness scale.

Y CVn Izumiura et al. (1996), 8'× 35' ISOPHOT map

Vienna, 20 August 2010 – p.7/29

Spectroscopy of nearby objects

Goal: Study of dust properties, molecular lines, emission lines

NGC 6302; Molster et al., SWS + LWS spectrum Vienna, 20 August 2010 – p.8/29

Partners involved

Partner	"origin"	hours	special interest
Belgium	PACS GT	145	KUL (AGB, post-AGB, PN, WR, LBV)
			ROB (AGB, PN)
			ULB (binary AGB)
			IAGL (WR, LBV)
Vienna	PACS GT	47	AGB
Heidelberg	PACS GT	10	SN remnants
SAG 6	SPIRE GT	80	SN, AGB, post-AGB, PN
HSC	HSC	26	special type of post-AGB
MS	MS	5	Molecules in specific stars
		_	
		313	

Implementation (Photo)

PACS:
"Scan Maps" at 70 + 160 μm
78 AGB/RSG, 16 post-AGB/PN, 8 WR/LBV, 5 SN
OBSERVED: 72

SPIRE:
"Large maps" at 250, 350, 500 μm
26 AGB/RSG, 8 post-AGB/PN, 5 SN
ALL but 3 OBSERVED

Mapping strategy

PACS: concatenate scan and cross-scan; for SPIRE this is done in a single AOR.

Implementation (Spectro)

PACS:
Concatenation of two AORs to cover entire
60-210 μm region
27 AGB/RSG, 26 post-AGB/PN, 2 WR/LBV, 4 SN

OBSERVED: 3 PV/SDP + 14

SPIRE: Complete FTS scan in a single AOR9 AGB/RSG, 10 post-AGB/PN, 2 WR/LBV, 1 SNALL but 1 OBSERVED

Detached shells

Kerschbaum et al. (2010)

PACS: blue / red / combined

AQ And, U Ant, TT Cyg

talk by Franz Kerschbaum, and poster II.23 by Marko Mecina et al.

Vienna, 20 August 2010 – p.13/29

CW Leo

GALEX NUV/FUV composite (left), FUV (right). Sahai & Chronopoulos (2010)

CW Leo

PACS 160 and SPIRE 250 micron $23' \times 27'$ (Ladjal et al. 2010 and Poster II.15)

Vienna, 20 August 2010 – p.15/29

CW Leo

Intensity profiles FUV, 160, 250,350,550 micron $T_{\rm dust} = 25 \text{ K}$ $V_{\star relative ISM} = 107/\sqrt{n_{\rm ISM}} \text{ km s}^{-1}$

Interaction ISM

Talk by Alain Jorissen and Poster II.22 by Mayer et al.Akari: Ueta, his talk and poster V.5Vienna, 20 August 2010 - p.17/29

Models

Wareing et al. (2007)

Vienna, 20 August 2010 – p.18/29

2E+06

4E+08

6E+06

SN remnant: Cas A

Barlow et al. (2010)

Vienna, 20 August 2010 – p.20/29

SN remnant: Cas A

- non-thermal component: based on 6-cm VLA and 3.6- μ m IRAC image
- warm dust component: based on scaled 24- μ m MIPS image
- cold interstellar component: iterative procedure
- line contributions: archival LWS spectrum

"We confirm a cool dust component, emitting at 70-160 um, that is located interior to the reverse shock region, with an estimated mass of 0.075 M_{\odot} "

"The present observations provide no direct evidence for the presence of significant quantities of cold dust. The cause of the 850- μ m excess in the SCUBA map of the northern part of the remnant is therefore unresolved."

NGC 6720

van Hoof et al. (2010) PACS 60 and 160 micron

NGC 6720

van Hoof et al. (2010) SPIRE 250, and PACS 70 micron with H₂ contours \Rightarrow H₂ formation on dust grains, in high density knots.

VY CMa, Royer et al. (2010) talk by Leen Decin, and Poster IV.8 by Matsuura et al.

MESS - Spectroscopy

• AFGL 2688, AFGL 618 and NGC 7027 Wesson et al. 2010, and his talk

• CW Leo

-HCl lines from J=1-0 up to J=7-6 have been detected. (Cernicharo et al. 2010)

-Tens of lines from SiS and SiO, including lines from the v=1 vibrational level. Both species trace the dust formation zone. (Decin et al. 2010)

-Water (Decin et al. 2010 accepted by *Nature*)

Dust spectroscopy

de Vries et al., Poster V.2 Fosterite at 69μ m in HD 161796

R Dor, full PACS spectrum

Conclusions

- Detected "old" dust mass loss in AGB stars !
- Interaction with the ISM is common
- Line spectroscopy very succesfull
- Issues
 - Faint extended emission PhotProject/NaiveMapper versus MADMap and other techniques
 - Dust emission close to the star PSF subtraction / deconvolution (Ottensamer et al., Poster V.4)
 - Dust spectroscopy Improved data reduction; RSRF; removal of molecular lines

Perspectives

- Complete the program..... (next few months)
- Hopefully MESS follow-up proposals will be accepted
 - Some new targets where detached shells and/or wind-ISM interaction are expected
 - Spectroscopy on a few of the bow-shocks
 - mass loss in RGB stars
- Mid-IR interferometry
- multi-wavelength studies (scattered light, interferometry)
- Hydrodynamical simulations ...!!

MESS is produced by

A. Baier, M. Barlow, B. Baumann, J. Blommaert, J. Bouwman,
P. Cernicharo, M. Cohen, L. Decin, L. Dunne, K. Exter,
P. Garcia-Lario, H. Gomez, M.A.T. Groenewegen, P. Hargrave,
Th. Henning, D. Hutsemékers, R. Ivison, A. Jorissen,
F. Kerschbaum, O. Krause, D. Ladjal, T. Lim, M. Mecina,
W. Novotny-Schipper, G. Olofsson, R. Ottensamer,
E. Polehampton, Th. Posch, G. Rauw, P. Royer, B. Sibthorpe,
B. Swinyard, T. Ueta, C. Vamvatira-Nakou, B. Vandenbussche,
G. Van de Steene, S. van Eck, P. van Hoof, H. Van Winckel,
E. Verdugo, H. Walker, C. Waelkens, R. Wesson

FWF-projects: P18939-N16 & I163, P21988 FWO STFC ASAP-CO-016/03 PRODEX C90371

