JAGB stars as distance indicator

Martin Groenewegen

Else Magnus, L Girardi, G. Pastorelli, P. Marigo, M.L. Boyer

Royal Observatory of Belgium/Koninklijke Sterrenwacht van België, Brussels (martin.groenewegen@oma.be)

 $\star \star \star \star \star$ $\star \star \star \star$

200 year history

Overview Talk

- Introduction
- Literature overview
- Work on SMC, LMC, and MW
- Conclusions and Prospects

Introduction

 H_0 tension

classical path: Cepheid - SNIa

CMB: 67.4 ± 0.5 km/s/Mpc Cepheid/SNIa: 73.2 ± 0.9 km/s/Mpc (Breuval et al 2024)

42 SNe in 37 galaxies

Four anchors: MW (*Gaia* parallaxes), SMC, LMC (dEBs), NGC 4258 (megamaser)

Cross-checks: Mira *PL*-relation (Caroline Huang 2401.09581) JAGB method

Introduction

AGB stars

Late-type stars

- All stars ${\lesssim}7\text{--}8~M_{\odot}$ go through the AGB phase
- Alternate H and He shell-burning
- Dredge-up of Carbon (and s-process elements) into atmosphere
- Exact $M \rightarrow S \rightarrow C$ sequence is uncertain
 - Depends on: -initial mass -metallicity -mass loss -dredge-up -Hot Bottom Burning C-star formation: $M_{initial} \gtrsim 1.5 M_{\odot}$ (solar), $\gtrsim 1.3 M_{\odot}$ (LMC)

Plus and Minus

(dis)advantages J-AGB (and TRGB) versus Cepheids:

single epoch versus multi-epoch

(CEP more easily discovered in optical, but then requires IR follow-up [template fitting])

JAGB are 1 mag brighter than TRGB, and about brightness of 25*d* CEP

CEP are found only in young populations, typically in the inner parts [crowding/blending] JAGB/TRGB are found in intermedeate-age populations,

still good statistics in the outer parts of galaxies

but, theoretical understanding and absolute calibration in its infancy

History of JAGB

Nikolaev Weinberg (2000)

Wien, 14-10-2024 - p. 9/27

&

History

N&W (2000), W&N (2001)

Based on 14 C-Miras with $1.4 < (J - K_s) < 1.9$ in region J: $K_{\rm s} = -(0.99 \pm 0.80) (J - K_{\rm s}) + (12.36 \pm 1.33)$

From this it actually follows that $K_{\rm s} + 0.99 \ (J - K_{\rm s}) \approx J = 12.36$ with DM of 18.5 one finds that $M_{\rm J} \approx -6.14$ mag

ASTROPHYSICAL JOURNAL, 899:66 (7pp), 2020 August 10 20. The Author(s). Published by the American Astronomical Society.

https://doi.org/10.3847/1538-4357/aba0

EN ACCESS

Astrophysical Distance Scale: The AGB J-band Method. I. Calibration and a First Application

Barry F. Madore^{1,2}⁽¹⁾ and Wendy L. Freedman²⁽¹⁾ ¹ The Observatories, Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101, USA ² Dept. of Astronomy & Astrophysics, University of Chicago, 5640 S. Ellis Avenue, Chicago, IL 60637, USA; barry.f.madore@gmail.com, wfreedman@uchicago.edu Received 2020 April 1; revised 2020 June 21; accepted 2020 June 24; published 2020 August 13

Abstract

A near-infrared, color-selected subset of carbon-rich asymptotic giant branch (C-AGB) stars is found to have tightly constrained luminosities in the near-infrared J band. Based on JK photometry of some 3300 C-AGB stars in the bar of the Large Magellanic Cloud (LMC) we find that these stars have a constant absolute magnitude of $\langle M_J \rangle = -6.22$ mag, adopting the detached eclipsing binary (DEB) distance to the LMC of 18.477 ± 0.004

History - Methodology

Reference	Gal.	(J-K)	$M_{ m J}$	method
Madore & Freedman (2020)	LMC	1.3- 2.0	$-6.22\pm$ 0.04	mean
	SMC	1.3- 2.0	$-6.18\pm$ 0.05	mean
Freedman & Madore (2020)	MCs	1.3- 2.0	$-6.20\pm$ 0.04	mean; applied to 14 galaxies
Lee et al. (2022)	MW	1.4-2.0	$-6.14 \pm$ 0.12	mean; 2 catalogs of C-stars
Madore et al. (2022)	MW/OC	(1.2)-2.0	$-6.40\pm$ 0.40	mean, 17 stars
		. ,	$-6.20\pm$ 0.02	average of MCs & MW
				-
Ripoche et al. (2020)	LMC	1.4-2.0	-6.284 ± 0.004	median
	SMC	1.4-2.0	-6.16 ± 0.02	median
	MW	1.4-2.0	-5.60 ± 0.03	median
Zgirski et al. (2021)	LMC	1.3-2.0	$-6.21\pm$ 0.01	Gaussian
	SMC	1.3-2.0	$-6.20\pm$ 0.01	Gaussian
Parada et al. (2023)	LMC	1.4-2.0	$-6.33 \pm$ 0.01	Lorentzian, mode $s = -0.47$
	SMC	1.4-2.0	$-6.18\pm$ 0.01	Lorentzian, mode $s = +0.02$

Ripoche et al. (2020), Parada et al. (2021), Parada et al. (2023): Lorentzian (Adopt a selection box of 2.5 mag height in J) External galaxies: 1) fit LF, determine s, 'SMC' or 'LMC'-like, 2) apply respective calibration

Our work - Data

 Lebzelter+ 2022 LPV catalogue (1.7M objects). Contains an C-star classifier based on *Gaia* Rp-spectra
 Correlate with 2MASS, only retaining objects with 'AAA' [difference with Lee et al. 2022]

3) Get Gaia data

4a) SMC, LMC selected according to positional and proper motion cuts (4900, 39000 sources)
Distances from dEB (Pietrzynski+2019, Graczyk+2020)
Reddening Skowron+2021 maps
4b) MW

 $R_{\rm plx} \equiv (\pi + 0.1)/\sigma_{\pi} >= 5$ (258 000 sources all-sky) Distance from Bailer-Jones+2021 Sources in MCs, Sgr dSph, M31, M33 are removed Reddening from STILISM-maps (Lallement+ 2018)

Our work - classification

Additional M/C-star classification from Lebzelter+2018, Mowlawi+2019

K versus $\Delta W_{\rm G2M}$

$$\Delta W_{\rm G2M} = W_{\rm Bp,Rp} - W_{\rm K,J-K_s},$$

where

$$W_{\rm Bp,Rp} = Rp - 1.3 \cdot (Bp - Rp)$$

and

$$W_{\rm K,J-K_s} = K_{\rm s} - 0.686 \cdot (J - K_{\rm s})$$

are reddening-free Wesenheit indices.

Gaia - 2MASS diagram

Our work - Quantities

select range in *J* – *K* select range in *J* other selection in the data (photometric errors, *Gaia* parameters)

4) mean, median, J(@(J - K) = 1.6), peak of the distribution

$$G = \frac{N}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right) + b + c \left(x-x_0\right) + d \left(x-x_0\right)^2$$

$$L = \frac{N}{1 + \left(\frac{x-\mu}{w}\right)^2 + s \left(\frac{x-\mu}{w}\right)^3 + k \left(\frac{x-\mu}{w}\right)^4} + b + c \left(x - x_0\right) + d \left(x - x_0\right)^2_{\text{Wien, 14-10-2024 - p. 15/27}}$$

Our work - Results MCs

mean, peak of the Gaussian distribution/mode, J(@(J - K) = 1.6) agree within 0.03 mag between SMC and LMC.

LF are not the same, as evidenced by the Lorentzian distribution (and the median)

Our work - Results MW

In short: problematic ...

1.2 < J - K < 2.0 M-star contam. 13% (SMC), 34% (LMC) 1.5 < J - K < 2.0 M-star contam. 4% (SMC), 1% (LMC) MW: M-star contamination below 10% only for 1.5 < J - K < 2.0 mag.

Issues:

- Closest-by AGB stars (with best parallaxes) saturate in 2MASS
- 3D reddening maps
- parallax zero-point offset Bailer-Jones+2021 (prior?)

Our work - Results MW

Tried remedies:

- Look for wide-binary companions and use that parallax
- AGB stars in clusters, and use cluster parallax
- Used a few-hundred stars observed in SAAO system (transformation)

(In the end, this does not have an impact, but ...)

EI-Badry+2021 (EIB)

1.1M pairs with >99% probability of being bound.

 $\pi > 1 \text{ mas}$

Subset: 20 800 objects with $1.3 < (J - K_s)_0 < 2.0$ mas Similar size test sample from EIB with π close to 1 mas. Implemented the selection rules of EIB.

Test sample: 14400 have a single WBS candidate (in all cases the one listed by EIB) 7200 have potentially multiple matches. Using a penalty function favouring the closer component all but 15 are retrieved (triples ?).

```
Applied to AGB sample: 65 candidates.
R Scl
secondary: 2.703 \pm 0.017 mas
primary: 2.54 \pm 0.08
independent: 2.77 \pm 0.30
(Maercker+2018, phase-lag)
R Hya
secondary: 7.79 \pm 0.20 mas
primary: 6.74 \pm 0.46
independent: 7.93 \pm 0.18
(VERA collaboration 2020, VLBI)
```

Cluster parallax is more precise and more accurate than the AGB star parallax

Marigo et al. (2022): 51 unique objects

They: DR2 data + recomputed DR3 with parallax zero-point offset for subsample

Here: DR3 with PZPO for all based on Lindegren+2021 (why PZPO: QSOs on average have non-zero parallax)

Cluster	$\pi\pm\sigma_{\pi}$	$\pi \pm \sigma_{\pi}$	
	(μ as)	AGB stars (μ as)	
Berkeley 53	301.9 ± 12.0	$233\pm 64,274\pm 33,345\pm 46,356\pm 50$	
Ruprecht 112	$\textbf{382.8} \pm \textbf{11.1}$	$368 \pm 39, 463 \pm 57$	
Berkeley 54	159.4 ± 12.9	200 ± 37	
Dias 2	248.9 ± 15.5	214 ± 34	
FSR 154	264.0 ± 11.9	275 ± 55	
FSR 1521	$\textbf{281.1} \pm \textbf{13.0}$	200 ± 54	
Haffner 14	274.5 ± 11.6	221 ± 21	
NGC 559	$\textbf{358.1} \pm \textbf{11.2}$	303 ± 37 Wien, 14-10-2024 - p. 27	1/27

Our work - Results MW

In the end, MW LF is based on 126 stars only

 $(1.5 < (J - K_s)_0 < 2.0 \text{ mag and } \Delta(M_J)_0 = 1.2 \text{ mag})$

LMC	SMC	MW	method
-6.2518 ± 0.0035	-6.1992 ± 0.0132	-5.897 ± 0.023	mean
-6.2609 ± 0.0039	-6.1830 ± 0.0147	-5.853 ± 0.030	median
-6.2454 ± 0.0045	-6.1761 ± 0.0195	-5.838 ± 0.041	peak Gaussian
-6.3104 ± 0.0065	-6.1732 ± 0.0191	-5.830 ± 0.086	peak Lorentzian
-6.2386 ± 0.0040	-6.1941 ± 0.0133	-5.847 ± 0.022	$ZP@(J - K_s)_0 = 1.6 mag$

Future work: Models

PRELIMINARY calculations (Pastorelli et al. in prep).

COLIBRI-PARSEC tracks (Marigo+17) + TRILEGAL population synthesis code (Girardi+05)

"Calibrated" in SMC and LMC (Pastorelli+19, Pastorelli+20)

Models: constant SFR, 1.3 < J - K < 2.0

Z= 0.004, 0.008, 0.014 (x-axis goes from -4.5 to -8.5 mag)

Theoretical Models

Prospects & Conclusions

(ArXiv: 2410.05974)

- Methodology and understanding needs more work !
- SMC and LMC LF are not symmetric
- LF MW is uncertain (saturation, incompleteness, *Gaia* parallaxes)

 \Rightarrow Get ground-based NIR data for a few hundred nearby AGB stars

Prospects & Conclusions

Bypass ground-based NIR: directly use JWST

Lee+ 2408.0347: F115W (F356W or F444W) 7 SNIa host galaxies, tied to NGC 4258 $H_0 = 67.96 \pm 1.85 \pm 1.90$ km/s/Mpc

Alternative route: TRGB - SBF (Anand+ 2405.03743, 2408.16810)

THE END