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ABSTRACT

CW Leo has been observed six times between October 2009 and June 2012 with the SPIRE instrument on board the Herschel
satellite. Variability has been detected in the flux emitted by the central star with a period of 639± 4 days, in good agreement with
determinations in the literature. Variability is also detected in the bow shock around CW Leo that had previously been detected in
the ultraviolet and Herschel PACS/SPIRE data. Although difficult to prove directly, our working hypothesis is that this variability is
directly related to that of the central star. In this case, fitting a sine curve with the period fixed to 639 days results in a time-lag in
the variability between bow shock and the central star of 402± 37 days. The orientation of the bow shock relative to the plane of the
sky is unknown (but see below). For an inclination angle of zero degrees, the observed time-lag translates into a distance to CW Leo
of 130± 13 pc, and for non-zero inclination angles the distance is smaller. Fitting the shape of the bow shock with an analytical
model (Wilkin 1996, ApJ, 459, L31), the effect of the inclination angle on the distance may be estimated. Making the additional
assumption that the relative peculiar velocity between the interstellar medium (ISM) and CW Leo is determined entirely by the star
space velocity with respect to the local standard of rest (i.e. a stationary ISM), the inclination angle is found to be (−33.3± 0.8)◦ based
on the observed proper motion and radial velocity. Using the Wilkin model, our current best estimate of the distance to CW Leo is
123± 14 pc. For a distance of 123 pc, we derive a mean luminosity of 7790± 150 L� (internal error).
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1. Introduction

CW Leo (=IRC +10 216 = AFGL 1381) was discovered by
Becklin et al. (1969) in the pioneering Two-micron Sky Survey
as an extremely red object. It soon turned out to be a carbon star
(Miller 1970; Herbig & Zappala 1970) in an advanced stage of
stellar evolution called the asymptotic giant branch (AGB). It is
pulsating and surrounded by an optically thick dust shell and a
large molecular circumstellar envelope (CSE).

In the near- and mid-infrared (IR) it is one of the brightest
objects in the sky, thus a typical target for any new instrument
or telescope operating from the infrared to the millimetre. With
the Herschel satellite (Pilbratt et al. 2010) two important discov-
eries have already been published on CW Leo: the discovery of
many high-temperature water lines that have shed new light on
the origin of water around carbon stars (Decin et al. 2010), and
the confirmation of a bow shock, produced by the interaction of
the stellar wind with the interstellar medium (ISM), originally

� Herschel is an ESA space observatory with science instruments
provided by European-led Principal Investigator consortia and with im-
portant participation from NASA.
�� Appendix A is available in electronic form at
http://www.aanda.org

discovered by Sahai & Chronopoulos (2010) in the ultraviolet
with Galex, by Ladjal et al. (2010, hereafter L10).

Although an important object, its distance is uncertain,
which is reflected in the uncertain estimates of basic quan-
tities such as the luminosity and mass-loss rate. One of the
most in-depth studies was conducted by Groenewegen et al.
(1998), where dust and molecular radiative-transfer models were
used to fit simultaneously the available photometric data, the
Low Resolution Spectrometer spectrum taken by the Infrared
Astronomical Satellite, near- and mid-IR interferometric obser-
vations, and CO J = 1–0 up to 6–5 molecular line emission data,
available at that time. The conclusion was that the distance must
be in the range 110–135 pc (corresponding to a luminosity of
10 000 L� to 15 000 L�), which was consistent with the luminos-
ity of 7 700 L� to 12 500 L� based on the Mira period-luminosity
(PL-) relation (Groenewegen & Whitelock 1996), taking into ac-
count the scatter in that relation. Other distances quoted in the lit-
erature are based on slightly different versions of the PL-relation,
e.g. 120 pc (Schoïer et al. 2007) or 140 pc (Menzies et al. 2006).

In this work, an independent distance estimate to CW Leo is
provided, based on the phase-lag between the flux variations of
the central star and the bow shock. In Sect. 2, the observations
are presented, and the analysis is described in Sect. 3. The model
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Table 1. Aperture fluxes in the SPIRE filters on the central star and bow
shock (last column).

Datea Julian date ObsIdb PSW PMW PLW PSW
250 μm 350 μm 500 μm 250 μm

(Jy) (Jy) (Jy) (Jy)
2009-10-25 2 455 129.6 186293 164.5 66.1 26.9 1.417
2009-11-11 2 455 147.2 186943 165.4 65.7 27.6 c

2010-10-24 2 455 494.3 207040 144.6 58.7 23.7 1.280
2011-05-30 2 455 711.6 221902 152.5 61.3 25.4 1.189
2011-10-23 2 455 858.2 231352 177.7 70.2 28.4 1.176
2012-06-03 2 456 082.2 246623 153.4 61.9 25.0 1.189

Notes. (a) Format: yyyy-mm-dd. (b) Add 1342000000 to get the
Observation ID. (c) This observation was taken in PV and the area cov-
ered did not include the bow shock.

that was used to correct for the inclination angle of the bow
shock is outlined in the Appendix.

2. Observations
Imaging observations on board the Herschel satellite with the
SPIRE (Griffin et al. 2010) istrument have been taken on six sep-
arate occasions (see Table 1). The observations were conducted
in October 2009 and 2010 as part of the MESS guaranteed-
time key program (Groenewegen et al. 2011), the observation
in November 2009 was taken in SPIRE performance verifica-
tion (PV) time and is publicly available through the Herschel
science archive, and the last three observations were part of a
DDT program (program DDT_mgroen01_6) with the specific
aim of studying the variability of CW Leo. In all cases, the
“Astronomical Observation Request” was identical, a SPIRE
“Large Map” with a repetition factor of 3. The map taken in PV
has a size 4′ × 4′ and does not include the bow shock, while the
other maps are 30′ × 30′.

The image taken in October 2009, together with a comple-
mentary PACS (Poglitsch et al. 2010) image, was discussed in
L10 and confirmed the presence of a bow shock around CW Leo
that had been discovered by Sahai & Chronopoulos (2010) in
GALEX data.

The SPIRE data were reduced in a standard way (see
Swinyard et al. 2010, Groenewegen et al. 2011) using the
Herschel Interactive Processing Environment (Ott et al. 2010,
HIPE) version 8.2.0 in June 2012. Aperture fluxes for the central
object were determined using the annularSkyAperturePhotome-
try tool in HIPE (see Groenewegen et al. 2011), and are reported
in Table 1. The apertures used were 237′′, 196′′, and 189′′ for
the PSW (250 μm), PMW (350 μm), and PLW (500 μm) fil-
ter, respectively. The beam areas to convert Jy/beam to Jy/pixel
are 423, 751, and 1587 arcsec2, respectively, in the three fil-
ters (SPIRE observers manual1) The fluxes for the first ob-
servation supersede those given in Groenewegen et al. (2011),
which were calculated using the calibration files associated with
HIPE 4.4.02. To determine the flux in the bow shock, a slightly
different approach was taken. Background sources were re-
moved from the image (they are irrelevant to the flux deter-
mination of the central star), using both the sourceExtractor-
Daophot and sourceExtractorSussextractor tools within HIPE.
The apertures for both the location of the bow shock and the sky

1 http://herschel.esac.esa.int/Docs/SPIRE/html/spire_
om.html
2 And were 138, 57.7, 23.2 Jy, in apertures of 211, 325, and 276′′ ,
respectively, and adopting beam areas of 501, 943, and 1923 arcsec2,
respectively.

Fig. 1. SPIRE PSW image with background sources removed, illustrat-
ing the location of the apertures used on the bow shock and the sky. The
size of the image is approximately 18 arcmin on a side. Some artifacts
of the source removal may be seen close to the central object.

were selected manually, and are shown in Fig. 1. As one can see,
there is a small gap in-between the two apertures. This is due to
a diffraction spike at this location in the PACS 70 μm image, and
this region should be excluded from the calculation of the flux
from the bow shock at that wavelength (see L10). This problem
is irrelevant to the present paper but does allow us to combine
different on-source apertures with different sky apertures to bet-
ter calculate the error in the flux determination. Using a different
sky aperture or doing one more pass of the background source
removal task results in an estimated systematic error of about
0.12 Jy. The random error in the actual flux measurement is es-
timated to be 0.03 Jy. The absolute flux calibration error is es-
timated to be 7% (SPIRE observers manual). The last column
of Table 1 gives the flux of the bow shock in the PSW filter.
The fluxes in the other two SPIRE filters are much lower and
are not reported here. Given the error in the fluxes, these two fil-
ters do not add to the variability information that is of concern
in the present paper. Although the full widthat half maximum
of the PSW beam is only about 18′′ (SPIRE observers manual),
the central star is very bright, and may still contribute to the flux
at the location of the bow shock. To estimate this, the flux was
determined in the exact same apertures as shown in Fig. 1 but
mirrored along the y-axis. The resulting flux is low (typically
−0.1 Jy in the 4 observations) and consistent with zero within
the errors. This means that the effect of the central star on the
measured flux of the bow shock is negligible.

3. Results and discussion
A sine curve of the form F(t) = F0 + A · sin (2 π (t − T0)/P) was
fitted to the data, using the program Period04 (Lenz & Breger
2005). The Monte Carlo option was used to estimate the error
bars. For the PSW, PMW, and PLW filters separately, periods
of, respectively, P = 635± 4, 638± 10, and 646± 4 days are
found. Independently, the PMW and PLW fluxes were scaled
to the average level of the PSW flux, and the period was de-
termined for the combined data set of 18 points to give a pe-
riod of 639± 4 days, which is consistent with the values above.
The derived period compares well to other determinations in
the literature: Le Bertre (1992) presented lightcurves in many
bands in the near- and mid-IR, and found an overall best-fit
period of 649 days (no error bar given), and periods based on
K-band lightcurves of 644± 17 days (Witteborn et al. 1980),
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Table 2. Amplitude and zero level of the lightcurves in the SPIRE filters
used to observe the central star and bow shock (Cols. 5–7).

Filter Fo A A/Fo Fo A A/Fo

(Jy) (Jy) (Jy) (Jy)
PSW 158.3 20.8 0.13 1.258 0.109 0.09
PMW 63.4 7.22 0.11
PLW 25.8 2.69 0.10

636± 3 days (quoted in Ridgway & Keady 1988, based on un-
published material), and 638 days (Dyck et al. 1991, no error
bar given).

For the period fixed to 639 days, the amplitude, A, and zero
level, F0, of the sine curve were determined, and are listed in
Table 2. The time of maximum light is To = 2 455 256.8± 2.2 for
the lightcurve of the central star. Taking the working hypothesis
that the flux variation of the bow shock follows that of the central
star, the time lag between the maximum light on the bow shock
and the central star was determined to be 402± 37 days. Figure 2
shows the lightcurve of the star and the bowshock in the PSW
filter, and the model fit to the observations.

The fit to the lightcurve of the bow shock flux is less secure,
and the five flux determinations may be equally well fitted by ei-
ther a constant or a line. A model with one parameter (a constant
of 1.250, which is the average of the five determinations) results
in χ2 of 24.0, and a value for the Bayesian information crite-
rion3 (Schwarz 1978) of BIC = 2.6. The sine model (with three
parameters, as the period is fixed) naturally results in a lower χ2

of 13.0, but also in a lower BIC of –5.2. The fit with a straight
line (two parameters) formally fits the data best, with χ2 = 4.7,
and BIC = –15.0. We do not have a plausible physical model
that can explain why the flux on the bow shock would decrease
exactly linearly with time.

To illustrate our working hypothesis for the physical situa-
tion, the dust radiative transfer model of Groenewegen (1997)
for CW Leo was updated with a newer version of the code
(Groenewegen 2012), by fitting the spectral energy distribution
(SED), near- and mid-infrared visibility curves, and PACS and
SPIRE radial intensity profiles (Groenewegen, in prep.). The fit
to the SED at mean light is illustrated in Fig. 3. For the model
shown in the figure, the dust temperature at the location of the
bow shock is 24.5 K. This is in excellent agreement with the
fit to the PACS and SPIRE photometry in L10, who derived
25± 3 K. At that temperature, the dust is primarily heated by
photons emitted at about 110 μm. The optical depth at that wave-
length is predicted to be 0.05, hence optically thin. The variation
in flux of the central star and inner dust region would therefore
be felt directly at the location of the bow shock.

In a second model to represent the variation from minimum
to maximum light, the effective temperature of the central star
was increased by 300 K (see Men’shchikov et al. 2001) and the
luminosity then increased as to reproduce the observed increase
in SPIRE PSW flux of the central star. In this model, the dust
temperature at the location of the bow shock was increased from
about 22.5 K to 27.5 K. This temperature variation alone would
lead to a variation in flux of about 70%, which is larger than is
observed (20%). The exact change in the dust temperature de-
pends however both on details of the model and the flux varia-
tion of the central star, which in turn depends on the details of
the SPIRE calibration.

The model is also simplistic in the sense that the temperature
calculated is that in the free expanding wind and not that in the

3 This is essentially a χ2 added with a term that penalizes models with
more free parameters.

Fig. 2. Observations and fitted sinusoidal curve to the SPIRE PSW
250 μm data on the central star (top panel), and the bow shock (lower
panel). The bottom panel also includes the best fit to the data using a
constant (the red dashed line), and a line (the blue dotted line).

bow shock, which is the result of the interaction of the wind
with the interstellar medium. The calculation did show that the
variation in theflux of the central star could lead to a variation in
temperature and hence flux at the location of the bow shock, and
that the flux variation is expected to follow the variation of the
central star. The change in flux could also be due to a variation
in dust density, but the timescale for the bow shock to adjust to
changes in either the mass-loss rate of the central star (of order
500–1700 years, Decin et al. 2011) or the local density of the
ISM is expected to be much longer than the pulsation period of
the star (1.7 years). Hydrodynamical models (van Marle et al.
2011; Cox et al. 2012) tuned to CW Leo may in the future lead
to a better understanding of the nature of the dust emission.

The phase lag between the lightcurve measured on the cen-
tral star and the bow shock allowed us to determine the distance
to CW Leo. The phase lag of (402± 37) light days corresponds
to (1.041± 0.096) 1018 cm, and this translates to a relation be-
tween distance, d (in pc), and angular separation (Δθ) between
the emission of the central star and the bow shock of dΔθ =
(6.96± 0.64) 104 (.′′ pc).

The distribution of the angular distance Δθ of all points in-
side the aperture shown in Fig. 1 and the central star was deter-
mined, and found to be (534± 16)′′, based on the median value
and the error estimated from half the difference between the 69%
and 31% percentiles of the distribution.

If the bow shock were located in the plane-of-the-sky, the
distance to CW Leo would follow immediately as d = 130 ±
13 pc. This is also an upper limit to the distance, as for bow
shocks inclined with respect to the plane-of-the-sky the distance
will be smaller.

To improve on this result, and obtain an estimate for the dis-
tance rather than just an upper limit, we employed a model that
describes analytically the shape of a bow shock in the thin-shell
limit (Wilkin 1996). The model was used in L10 (also see Ueta
et al. 2008, 2009). In L10, we had assumed that the column den-
sity reaches its highest value where the bow shock cone inter-
sects with the plane of the sky including the central star. The
Monte Carlo simulations of the three-dimensional (3-D) struc-
ture described in Appendix A now show that this is not the case,
and that for non-zero inclinations of the bow shock the surface
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Fig. 3. Fit to the SED (top panel), with a zoomed image of the 10 μm
region in the lower panel. For a distance of 123 pc, the luminosity is
7790 L�. The horizontal lines in the lower panel indicate the wavelength
regions excluded from the fitting.

Table 3. Angular distance to the central star of all points on the
"Wilkinoid" that fall in the aperture when projected on the sky for var-
ious inclination angles (i) based on the Wilkin model, and the derived
distance to CW Leo.

i Δθ distance i Δθ distance
(◦) (′′) (pc) (◦) (′′) (pc)
0 534.4 ± 18.3 130.2 ± 12.7 33.3 564.7 ± 37.4 123.3 ± 13.7
10 540.9 ± 19.8 128.6 ± 12.7 36 568.1 ± 39.0 122.5 ± 13.7
20 550.5 ± 25.6 126.4 ± 12.9 50 600.6 ± 56.0 115.9 ± 14.5
30 561.2 ± 30.4 124.0 ± 13.1 60 655.7 ± 77.0 106.1 ± 14.8

brightness peaks at a location away from this plane (also see Cox
et al. 2012).

Using these Monte Carlo simulations, it was possible to es-
timate for any inclination the distribution of angular distances
Δθ to the central star of all points on the “Wilkinoid” that fall in
the aperture when projected on the sky. The results are listed
in Table 3, together with the distance that then follows. We
note that the fitting of the Wilkin model to the observed trace
of the bow shock in itself does not allow the inclination to be
determined. For zero inclination, the model gives a distance of
(534.4± 18.3)′′, in good agreement with the observed value of
(534± 16)′′.

Making one further assumption, we further refine our esti-
mate for the distance to CW Leo. The radial velocity of CW Leo
is VLSR = −25.5 km s−1 (Groenewegen et al. 2002), correspond-
ing to Vhelio = −18.6 km s−1, and its proper motion (PM) is
μα cos δ = +35± 1, μδ = +12± 1 mas yr−1 (Menten et al. 2012).

At this point, we assume that the relative peculiar velocity
between the ISM and the star is determined entirely by the star
space velocity with respect to the local standard of rest (LSR)
(i.e. a stationary ISM). Then, following Cox et al., one can calcu-
late the inclination angle. Unfortunately, there is a typographical
error in Table 1 of Cox et al. for CW Leo.

The correct values should read (for a distance of 123 pc, see
below): a total PM of μ = 65 mas yr−1, a peculiar space velocity
of v� = 45.7 km s−1, position angle of PA = 66◦, and, taking
into account the errors in PM and RV (0.5 km s−1 adopted), an
inclination angle of i = −33.3± 0.8◦.

For this angle, one can take the true angular distance
between the points located on the bow shock and the central star

from Table 3, and find our current best estimate of the distance
to CW Leo of 123± 14 pc.

The model illustrated in Fig. 3 leads to a luminosity of
7790± 150 L� for a distance of 123 pc. Taking into account the
error in the distance, we find Mbol = (−4.94 ± 0.25). This is
in agreement with the Mira PL-relation of Feast et al. (2006),
Mbol = −2.54 log P + 2.06(±0.24), which gives (−5.07 ± 0.24)
for P = 639 days. Menten et al. (2012) recently estimated the
luminosity at phase 0.75 of the lightcurve (i.e. approximately
mean light) from VLA observations to be (8640 ± 430) L� for
130 pc, or (7730 ± 380) L� for 123 pc, in excellent agreement
with us.
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Appendix A: The Wilkin model

In L10, the apparent shape of the bow shock was modelled fol-
lowing the exact analytical solutions of Wilkin (1996), under
certain assumptions. In particular, we had assumed that the col-
umn density tends to reach its highest value where the bow shock
cone intersects with the plane of the sky including the central
star. The Monte Carlo simulations of the 3-D structure described
below show that this is not the case, and that for non-zero in-
clinations of the bow shock the surface brightness peaks at a
location away from this plane.

Here we present a 3-D Monte Carlo simulation of the case
where an isotropic stellar wind interacts with the ISM of homo-
geneous velocity Vw relative to the star and with a stratified ISM
density along the y-axis of the form ρ = ρ0 + a y. This more
complicated case than Wilkin (1996), where a = 0, can also be
described analytically (Wilkin 2000, and Canto et al. 2005; here-
after CRG). Here, we also assume thay a = 0. The coordinate
system is defined in Fig. A.1.

The Monte Carlo simulation starts with drawing the angle θ,
0 < θ < θmax (θmax = 165◦ adopted) from a probability density
function

P(θ) =
∫ θ

0
σ(θ′)R(θ′) sin(θ′)dθ′/P(θmax), (A.1)

where σ is the mass surface density (Eq. (12) in Wilkin 1996).
The azimuthal angle φ is a random value between 0 and 2π.
R(θ, φ) can be solved from a third-order equation (Eq. (28) in
CRG) for a given ε = aR0/ρ0, where R0 is the so-called standoff
distance. For a = 0, R is a function of θ only. The velocities in
the z and x-direction are given by Eqs. (17), (18), (33), (34), (35)
in CRG.

The position and velocities in the cylindrical coordinate sys-
tem are then transformed to the (x, y, z) system, which is then
rotated over specified angles λ, PA, and i to the observers frame.
The outline of points can than be compared to the observed lo-
cation of the bow shock, in order to infer the standoff distance,
PA, and inclination (when a = 0 there is no dependence on the
angle λ).

The results of the calculations are summarised in Table A.1,
and an example of the fit to the observed trace is illustrated in
Fig. A.2. For a fixed inclination, the standoff distance Ro and
position angle PA were derived from a fit to the trace of the bow
shock in the SPIRE 250 μm filter (L10). The reduced χ2 (χ2

r ) is
reported as a measure of the fit. The reduced χ2 is quite large and
is related to the systematic deviation between observations and
the Wilkin model for larger Z-values. This probably indicates the
limitations of the analytical model. We note that every simulated
point is assumed to be equally “observable”. What is observed
in reality is dust emission in the PSW filter, and the effect of
changing the dust density and dust temperature along the bow
shock is not considered here. However, such effects are likely the
reason why the bow shock can not be traced beyond ∼± 500′′.
Since the procedure fits the trace of the bow shock, this should
have little effect.

Although the smallest χ2 are found for large inclination
angles, the minimum is very shallow and the inclination angle
cannot be derived from the Wilkin fitting (the same conclusion
is reached by Cox et al. 2012). The error quoted is the formal fit

Table A.1. Results of the Wilkin fitting.

Inclination Standoff distance Position angle Reduced χ2

i Ro PA (S-of-E) χ2
r

(◦) (arcsec) (degrees)
–0 499.1± 0.52 −0.67 ± 0.49 20.9
–10 493.2± 0.47 −0.46 ± 0.43 20.9
–20 478.7± 0.51 −0.35 ± 0.48 20.5
–30 453.9± 0.49 −0.50 ± 0.43 19.8
–33.3 443.4± 0.49 −0.12 ± 0.43 19.6
–36 434.3± 0.47 −0.25 ± 0.43 19.4
–45 398.5± 0.43 +0.08 ± 0.37 18.4
–50 375.6± 0.41 +0.03 ± 0.33 17.8
–60 322.3± 0.35 −0.03± 0.25 16.4
–70 258.8± 0.32 −0.11 ± 0.20 14.7

Fig. A.1. Definition of the right-handed coordinate system for the thin-
shell bow shock model. With reference to the plane of the sky, the posi-
tive x-axis points east, the positive y-axis points north, while the positive
y-axis points towards the observer. θ is the polar angle from the axis of
symmetry, as seen from the star at the origin. The azimuthal angle φ (not
shown) is counted from the positive z-axis towards the positive y-axis.
The coordinate system may be rotated over the x-axis by an angle λ
counted in the same way as φ, over the y-axis by an angle PA (the posi-
tion angle) counted from the positive x-axis towards the negative z-axis
(i.e. south-of-east), and over the z-axis by an angle i (the inclination)
counted positive from the positive x-axis towards the negative y-axis.
Shown is the Wilkin curve for a standoff distance of R0 = 1. The star is
at rest and colliding head-on with a wind moving at a velocity Vw.

error. Monte Carlo simulations were performed allowing for a
Gaussian error in the position of the trace of 3′′ (half a SPIRE
PSW pixel) along the z-axis. The results show that the errors
reported for Ro and PA are realistic, but also that the spread in
the reduced χ2 is large, approximately 1 unit, indicating again
that the inclinations angle cannot be derived from the Wilkin
fitting alone.

For each combination of i, Ro, and PA and every point inside
the apertures shown in Fig. 1, the true distance to the central star
is recorded and are reported in Table 3.
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Fig. A.2. Monte Carlo simulation of a bow shock, for a standoff dis-
tance R0 = 499′′ , 0◦ inclination, and position angle −0.67◦. CW Leo
is at (0,0), and the units of the axis are in arcseconds. The red crosses
indicate the trace of the bow shock as seen with SPIRE at 250 μm (L10
and this paper).
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