The impact of micro-lensing surveys on variable star research

Martin Groenewegen

K.U.Leuven

Straatsburg, 10 June 2005 – p.1/47

Overview

- Micro-lensing surveys
- How to find your variables
- Pulsational variables stellar evolution, distance scale, interior structure
- Eclipsing binaries fundamental parameters, stellar evolution, distance scale
- The future of surveys

History

- "long-term photometry of variables" (LTPV) 1982-1994, ESO 50cm Danish and SAT, 100 000 observations of 1700 stars
- AAVSO (5000 stars - 10⁷ observations - 100 years) AFOEV (8000 stars - 5 10⁶ observations - 100 years)
- Hughes (1989): 470 M, 570 SR in LMC; 50 photographic plates
- Lack of areal coverage / time coverage / numbers

Micro-lensing surveys

- MACHO <u>MAssive Compact Halo Objects</u>
- OGLE-I and -II Optical <u>Gravitational Lensing Experiment</u>
- EROS-2
 - <u>Expérience pour la Recherche d'Objets</u> Sombres
- MOA <u>Microlensing Observations in Astrophysics</u>

Principle of micro-lensing

MACHO fields in the LMC

Mirco-lensing surveys

Survey	OGLE-II	MACHO	EROS2	MOA
Time	1997-2000	7/1992-1/2000	7/1996-2/2003	1998-2004
Telescope	1.3m	1.27m	1.0m	0.61m
Area	SMC, LMC, GB	SMC, LMC, GB	SMC, ?	SMC, LMC, GB
Sq.deg.	2.4, 4.5, 11.0	2.5, 35, 35	10	10, 20, 18
Monitored	$2, 7, 30 (10^6)$	$3, 30, 40 (10^6)$	6 (10 ⁶)	$1.0, 8.0, ? (10^6)$
Variables	15, 53, 221 (10 ³)	-, -, -	-	-, -, -

Other results

MACHOs: τ_{smc} ~ (0.5 - 1) 10⁻⁶
Planetary Transits

- Quasar variability
- Proper motion
- Extinction maps

Variable star research

Pulsational variables: Miras (LPVs), Cepheids, RR Lyrae

Variable star research

• Eclipsing binaries

 Data analysis system (LPVs and EBs) downloaded 68 000 + 221 0000 OGLE-II *I*-band datafiles

Procedure

Step 1: Fitting LC

- Subtract best fit so far
- Find frequency (FASPER, PDM)
- Linear LSF (MRQMIN) $I(t) = I_0$ $+ \sum_{i=1}^{i=n_{\max}} (A_i \sin(2\pi t \omega_i) + B_i \cos(2\pi t \omega_i))$
- Stop: n = 3, or no significant frequency

Procedure

Step 2: Correlation and Selection

- Selection on Magnitude, Amplitude, properties of phased LC (neural networks)
- Correlate: 221801 OGLE \Rightarrow 91815 2MASS 68193 OGLE \Rightarrow 50129 2MASS & 40793 DENIS

Step 3:

- Visual inspection of fit to LC
- SIMBAD (spectral type)
- Generation of figures and LaTex tables

Frequency finding I

FASPER INPUT: time, magnitude, ofac, hifac OUTPUT: ν_{max} , probability Issues: aliases, harmonics ofac= 22; hifac= 0.8 (LPVs), 21 (EBs) limiting probability= 5.5 10⁻¹¹ (LPVs), 0.05 (EBs)

Frequency finding II

- Phase Dispersion Minimisation (θ-statistics; Stellingwerf 1978) at SELECTED frequencies 1, ¹/₃, ¹/₂, 2, 3 ν_{max}, 1-day alias
- Accept frequency if $\theta(\nu) < 0.9 \ \theta(\nu_{\max})$

Eclipsing Binary specifics

fitting sine + cosine function is not usefull
Phase at ¹/₂ ν_{max}

Phased lightcurve of an EB and a LPV

• Statistics at two magnitude levels at deepest eclipse

Eclipsing Binary specifics

Magnitude distribution of an EB and a LPV and 3%, 50%, 97% quantiles.

- Kolmogorov-Smirnof Test against a sinus curve probability $< 2.10^{-7}$ at random phase.
- $(m_{97} m_{50})/(m_{50} m_3) > 2.1$
- depth of eclipse: $(m_{97} m_3) < 0.75$ Straatsburg, 10 June 2005 p.16/47

RR Lyrae

 OGLE-II: 7612 LMC, 571 SMC Soszyński et al. (02, 03) MACHO: 6391/785 FU/FO LMC (Alcock et al. 03, 04) MACHO: 1800 Bulge (Alcock et al. 1998)

 $M_{\rm V} = 0.18 \; [{\rm Fe}/{\rm H}] + 0.67$

 $M_{\rm K} = -2.33 \log P - 1.28$

 Suggestion for future project: OGLE & final MACHO data on Bulge Correlate with DENIS and 2MASS IR-data

Cepheids

OGLE: Udalski et al. (1999a,b,c,d): 1335 LMC, 2048 SMC (FU, FO, SO, FU/FO, FO/SO) OGLE: Kubiak et al. (2003): 54 type-II GB MACHO: Alcock et al. (1999): 1800 in LMC MACHO: Alcock et al. (2002): 3 CEP in EB MACHO: Alcock et al. (1998): 30 type-II + RV Tau in LMC MACHO: Nikolaev et al. (2004): 3000 in LMC

- Tracer of SF (Alcock et al. 1997 for LMC)
- Geometry of LMC and SMC disk
- *PL*-relations and distances (2MASS)

Cepheid Period Distribution

Period distribution of LMC (left) and SMC Cepheids.

Straatsburg, 10 June 2005 – p.19/47

Cepheid *PL*-relation

FU *K*-band *PL*-relation for LMC (left) and SMC Cepheids (Groenewegen 2000, Nikolaev et al. 2004) Comparing with Galactic *PL*-relations: DM= 18.55 \pm 0.17 (LMC), 19.04 \pm 0.17 (SMC).

Cepheid: orientation of the MCs

DM-offset of the *PL*-relation versus *R*.*A*. for LMC. $i=18 \pm 3$ (Groenewegen 2000) $i=30.7 \pm 0.1$ (Nikolaev et al. 2004) $i=68 \pm 2$ (SMC, Groenewegen 2000)

Miras

- Wood et al. 1999, Wood 2000 (0.25 □² LMC-bar; 1430 red variables; MACHO + IR)
- Cioni et al. 2001 (0.5 □² LMC-OC; 240 M+SR; EROS + DENIS)
- Noda et al. 2002 (14 □² LMC; 146 LPV; MOA + DENIS)
- Lebzelter et al. 2002
 (0.25 □² LMC-bar; 470 red variables; AGAPEROS + DENIS)
- Cioni et al. 2003
 (0.25 □² ISO-sample SMC-bar, 458 red variables; MACHO + DENIS/2MASS)

Wood (2000)

Ita et al. (2003)

History

- Wood et al. 1999, Wood 2000 (0.25 □² LMC-bar; 1430 red variables; MACHO + IR)
- Cioni et al. 2001 (0.5 □² LMC-OC; 240 M+SR; EROS + DENIS)
- Noda et al. 2002 (14 □² LMC; 146 LPV; MOA + DENIS)
- Lebzelter et al. 2002
 (0.25 □² LMC-bar; 470 red variables; AGAPEROS + DENIS)
- Cioni et al. 2003
 (0.25 □² ISO-sample SMC-bar, 470 red variables; MACHO + DENIS/2MASS)

History

- Ita et al. 2003 ($1.0 \square^2$ SMC-centre; ~1800 red variables; OGLE + SIRIUS)
- Kiss & Bedding 2003 (~23000 red variables LMC; OGLE + 2MASS with J - K > 0.9)
- Fraser et al. (2005) (22 000 LMC MACHO + 2MASS)
- Groenewegen (2004) SMC+LMC; OGLE + 2MASS/DENIS (2277 spectroscopically confirmed M,S,C-stars)
- Groenewegen & Blommaert (2005) Galactic Bulge; OGLE + 2MASS/DENIS

Miras in the LMC

LMC PL(K)-relation for different cuts in amplitudes

Straatsburg, 10 June 2005 – p.27/47

LPVs in the Galactic Bulge

- Groenewegen & Blommaert (2005)
- 2691 Miras: $m_{\rm K} = (-3.37 \pm 0.09) \log P + (15.47 \pm 0.03)$
- Viewing angle of the Bulge: 43 ± 17 degrees
- Period distribution at various *b* indicate differences in population
- Distance GC: 8.6 9.0 kpc

Lightcurves of Bulge Miras

Galactic Bulge Mira *K*-band Period-Luminosity relation

ZP of *PL*-relation *versus* longitude

Modelling stars in the Bulge

Binney et al. (1997) model of COBE/DIRBE data.

$$f_{\rm b} = f_0 \exp(-a^2/a_{\rm m}^2) / (1 + a/a_0)^{\beta}$$

 $(f_0 = 624, a_m = 1.9 \text{ kpc}, a_0 = 0.10 \text{ kpc}, \beta = 1.8)$

$$a = \sqrt{x^2 + (y/\eta)^2 + (z/\eta)^2}$$

with the value of $\eta = 0.5$

 $f_{\rm d} = (\exp(-|z|/z_0) + \alpha \exp(-|z|/z_1)) \times R_{\rm d} \ (\exp(-r/R_{\rm d}) - f_{\rm h} \ \exp(-r/R_{\rm h}))$ $(z_0 = 210 \text{ pc}, z_1 = 42 \text{ pc}, \alpha = 0.27, R_{\rm d} = 2.5 \text{ kpc})$

Top view of Bulge (o) and Disc (•) stars for viewing angles of 43 and 79 degrees.

K-magnitude versus longitude for $\phi = 43$ (top) and 79°.

observed (\Box) and modelled (•) data Both angles fit slope versus *l* diagram, but only $\phi = 43^o$ fits the observed numbers

Theoretical period distribution of optically visible stars inside the observed instability strip for masses 1.1, 1.2, 1.5, 2.0 (1.2 Gyr), 2.5, $3.0M_{\odot}$ (200 Myr) (left to right, top to bottom) ^{Straatsburg, 10 June 2005 – p.37/47}

Distance to Galactic Centre I

- Reid (1993): 8.0 ± 0.5 kpc
- Eisenhauer (2003): O8-B2 star S2 orbiting the BH in 15.5 years \Rightarrow 7.9 \pm 0.4 kpc

Distance to Galactic Centre II

• $M_{\rm K} = \alpha \log P + \beta$ (+ $\gamma \log Z$) DM (LMC-GB) = 3.71 (for $\gamma = 0$) \Rightarrow **IF** DM(LMC) \equiv 18.50 then d(GB) = 9.0 kpc Theory by Wood (1990): $\gamma = 0.25$ (in K-band) DM (LMC-SMC) = 0.38; "rather small" \Rightarrow **IF** DM(LMC-SMC) \equiv 0.50 THEN $\gamma = 0.40$ \Rightarrow **IF** DM(LMC) \equiv 18.50 then d(GB) = 8.6 kpc $(DM(LMC) = -0.10 \iff d(GB) = -400pc)$

Using local calibration of Feast (2004): $d(GB) = 8.8 \pm 0.4 \text{ kpc}$

Eclipsing Binaries

- OGLE: Udalski et al. (1998); 1459 in SMC OGLE: Wyrzykowski et al. (2003, 2004); 2580 in LMC; 1350 in SMC MACHO: Alcock et al. (1997); 637 in LMC MOA: Bayne et al. (2002); 167 in SMC EROS: Grison et al. (1995); 79 in LMC
- RV + Photometry: Harries et al. (2004), Hilditch et al (2005) (detached, double-lined EB)

SMC DM based on 50 EB: 18.91 ± 0.03 Harries et al. (2004), Hilditch et al. (2005)

Eclipsing Binaries in MCs

- Groenewegen (2005)
- Test data set of 142 EBs previously claimed in literature to be suitable for distance work.
- Parameters mentioned earlier were finetuned: recovery of 137.
- Run on all MC OGLE-data. SMC: 714/752 in Wyrzykowski et al. (2004); 20 wrong (13 known Cepheids); 2 EB by MOA, 16 NEW

LMC: 1616/1856 in Wyrzykowski et al. (2003); 51 wrong 11 EB by MACHO, 178 NEW Complementary to neural network scheme by OGLE: 7.5% new, 2.5% false

Eclipsing Binaries in GB

• Run on all BULGE OGLE-data: 3053 EBs

• Future-1: Get 2 RV datapoints for \sim 25-50 stars

• Future-2: RV monitoring for sub-sample

Future of surveys

- OGLE-III Started June 2001 Monitoring 170M stars in GB, and 33M in MCs
- super-MACHO 4m CTIO, LMC, 5 years, 3 months/yr, every second d&g night, started 2003
- MOA-II 1.8m since Dec 2004

OGLE-III fields of SMC (top) and LMC

Future of surveys

- Panoramic Survey Telescope & Rapid Response System (Pan-STARRS) 4x 1.8m, 3 deg FoV, 24th mag, 20x year, 6000 deg²/n, 2006-2008
- Large Synoptic Survey Telescope (LSST)
 8.4m, 10deg² FoV, 24th mag, available sky in 3n (30TB/n), 2012
- GAIA, 2012, 1 billion objects, 80x, 5 years, G= 20, (several million variables)

THE END

Straatsburg, 10 June 2005 – p.47/47