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A B S T R A C T 

We used a supervised machine learning algorithm (probabilistic random forest) to classify ∼130 million sources in the VISTA 

Surv e y of the Magellanic Clouds (VMC). We used multiwavelength photometry from optical to far-infrared as features to be 
trained on, and spectra of active galactic nuclei (AGNs), galaxies and a range of stellar classes including from new observations 
with the Southern African Large Telescope (SALT) and South African Astronomical Observatory (SAAO) 1.9-m telescope. 
We also retain a label for sources that remain unknown. This yielded average classifier accuracies of ∼79 per cent [Small 
Magellanic Cloud (SMC)] and ∼87 per cent [Large Magellanic Cloud (LMC)]. Restricting to the 56 696 719 sources with class 
probabilities ( P class ) > 80 per cent yields accuracies of ∼90 per cent (SMC) and ∼98 per cent (LMC). After removing sources 
classed as ‘Unknown’, we classify a total of 707 939 (SMC) and 397 899 (LMC) sources, including > 77 600 extragalactic 
sources behind the Magellanic Clouds. The extragalactic sources are distributed evenly across the field, whereas the Magellanic 
sources concentrate at the centres of the Clouds, and both concentrate in optical/IR colour–colour/magnitude diagrams as 
expected. We also test these classifications using independent data sets, finding that, as expected, the majority of X-ray sources 
are classified as AGN (554/883) and the majority of radio sources are classed as AGN (1756/2694) or galaxies (659/2694), where 
the relative AGN–galaxy proportions vary substantially with radio flux density. We have found > 49 500 hitherto unknown AGN 

candidates, likely including more AGN dust dominated sources which are in a critical phase of their evolution; > 26 500 new 

galaxy candidates and > 2800 new young stellar object (YSO) candidates. 

Key words: methods: data analysis – galaxies: active – Magellanic Clouds – galaxies: photometry. 

1

A  

i  

m  

f  

f  

t  

t  

h  

A  

e  

�

i  

d
 

s  

d  

i  

t  

w  

o  

m  

c  

H  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/537/2/1028/7954762 by guest on 15 February 2025
 I N T RO D U C T I O N  

s the depth and field of view of surv e y telescopes continues to
mpro v e, it becomes increasingly more unfeasible for astronomers to
anually verify every individual source. Separating the extragalactic

rom the non-extragalactic is important for population studies and
or the study of individual systems. Identifying galaxies, and whether
hey are hosting an active galactic nucleus (AGN) or not, allows us
o study how galaxies evolve over cosmic time and what role AGN
ave to play in this process. Galaxies, especially those that host an
GN that have the potential to produce emission across the entire
lectromagnetic spectrum (e.g. P ado vani et al. 2017 ), are more easily
 E-mail: cpennock@ed.ac.uk 
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dentified from combinations of multiwavelength photometric surv e y
ata. 
Different wav elength re gimes probe different parts of the AGN’s

tructure (e.g. Netzer 2015 ; P ado vani et al. 2017 ; Hickox & Alexan-
er 2018 ). The UV/optical are sensitive to the accretion disc and the
nfrared (IR) is sensitive to the dusty obscuring material surrounding
he accretion disc. The emission of a corona is observed in X-rays,
hilst possible non-thermal radiation (which often take the form
f jets/lobes) is picked up in the radio. One of the most reliable
ethods of identifying an AGN is with optical spectroscopy, which

an reveal the broad and/or narrow emission lines of an AGN.
o we ver, spectroscopically observing e very source would be a time

onsuming process, which is why we often turn to photometric
urv e ys, which can observ e large areas of the sky much more
uickly. 
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ch permits unrestricted reuse, distribution, and reproduction in any medium, 
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Spectral energy distributions can be produced from photometric 
urv e ys, which for an AGN would exhibit a ‘big blue bump’, due
o the accretion disc and another bump in the mid-infrared (mid-IR)
ue to re-processed emission from dust heated by accretion from 

he central supermassive black hole, which is a feature that has been
ell used to select large samples of AGN (e.g. Lacy et al. 2004 ; Stern

t al. 2005 ; Secrest et al. 2015 ; Assef et al. 2018 ). Ho we ver, factors
uch as obscuration from dust, emission from the host galaxy and 
he abundance of stars in our field of view can make AGN harder
o select in one wavelength band, hence the need to make use of

ultiple wavelength regimes to ascertain a source’s true nature. 
The Magellanic Clouds are an often o v erlooked but – whilst

hallenging – eminently suitable and worthwhile location to search 
or the extragalactic sources behind them. The Clouds span ∼ 100 
q. degrees on the sky that have been covered as part of all-sky
ultiwav eband surv e ys such as the optical Gaia (Gaia Collaboration

021a ), the near -infrared (near -IR) Two Micron All Sk y Surv e y
2MASS; Skrutskie et al. 2006 ) and the mid-IR Wide-field Infrared 
urv e y Explorer (WISE; e.g. Cutri et al. 2013 ) surv e ys. Furthermore,

here have been Magellanic Cloud specific surveys, where depth 
nd angular resolution are impro v ed compared to all-sky surveys.
hey include ultraviolet (UV) with the Galaxy Evolution Explorer 
 GALEX ) and the UltraViolet Imaging Telescope ( UVIT ; e.g. Kumar
t al. 2012 ; Thilker, Bianchi & Simons 2014 ) and the optical Surv e y
f the Magellanic Stellar History (SMASH; Nidever et al. 2017 ) 
nd the MAGellanic Inter-Cloud Project (MAGIC; No ̈el et al. 2013 ,
015 ; Carrera et al. 2017 ), as well as surv e ys observ ed with the
ptizer Space Telescope in the mid-IR as part of the Sptizer Agents
f Galaxy Evolution (SAGE) surv e y of the Large Magellanic Cloud
LMC; Meixner et al. 2006 ) and Small Magellanic Cloud (SMC;
ordon et al. 2011 ), and the Herschel Space Observatory in the far-IR 

s part of the HERsc hel Inv entory of The Agents of Galaxy Evolution
HERITAGE; Meixner et al. 2010 ). Additionally, there have been 
any observations in the radio domain (e.g. MOST, ATCA; Mauch 

t al. 2003 ; Murphy et al. 2010 ) and X-ray ( XMM–Newton ; Sturm
t al. 2013 ). These galaxies are also located away from the Galactic
lane and Galactic Centre, reducing source confusion in the radio 
and and extinction at UV/optical/near -IR wa velengths. The main 
aveat for searching in the field of the Magellanic Clouds is the
ncreased stellar confusion. The new and deeper surv e ys towards 
he Magellanic Clouds such as the near-IR VISTA Surv e y of the

agellanic Clouds (VMC; Cioni et al. 2011 ) and radio Evolutionary 
ap of the Universe (EMU) all-sky (Joseph et al. 2019 ; Pennock

t al. 2021 ) surv e y greatly enhance such attempts. 
The VMC ESO public surv e y showcases a great impro v ement in

epth and angular resolution compared to previous near-IR surv e ys,
nd has detected stars encompassing most phases of evolution such 
s main sequence stars, sub-giants, upper and lower red giant branch 
RGB) stars, red clump stars, RR Lyræ and Cepheid variables, 
symptotic giant branch (A GB) stars, post-A GB stars, young stellar
bjects (YSOs), planetary nebulæ (PNe), and supernova remnants 
SNRs) populations (e.g. Gullieuszik et al. 2012 ; Ripepi et al. 2015 ;
ivkov et al. 2018 ; Groenewegen et al. 2019 , 2020 ; Zivkov et al.
020 ; Choudhury et al. 2021 ; Cusano et al. 2021 ) that can be used
o help assess the age, metallicity, 3D structure, etc., within the 

agellanic systems. This surv e y has also had success in disco v ering
ackground extragalactic sources (Cioni et al. 2013 ; Ivanov et al. 
016 ; Bell et al. 2019 , 2020 , 2022 ; Pennock et al. 2022 ). 
Machine learning algorithms are a use of artificial intelligence 

o automate tasks, such as identification and classification, on large 
ets of data that would otherwise pro v e time-consuming. The y can
lso replace subjective approaches that depend on user choices by 
bjective approaches that are data dri ven. Another adv antage of
achine learning is that they can combine information from multiple 

ata sets, ef fecti vely classifying within a highly multidimensional 
arameter space. Machine learning algorithms are usually divided 
nto two types, supervised and unsupervised. Unsupervised machine 
earning is predominantly used for clustering and dimensionality 
eduction, where objects with similar properties are grouped together 
n 2D space to find patterns/trends in the data. 

Supervised machine learning algorithms predict classifica- 
ions/values based on example data with features (e.g. photometry) 
nd kno wn classifications/v alues. They do this by analysing a known
ata set, the training set, and producing a model from this data set,
hich can then be used to make predictions of the output of an
nseen data set. A disadvantage of supervised learning is that it is
nly as good as the data it is trained upon, and is therefore not best
uited to finding new or unusual objects. Furthermore, imbalanced 
raining sets (when the amount of objects for one or more of the
lasses dominates the training set) can lead to poor performance of
he classifier, though this can be mitigated by artificially balancing 
he training sets (e.g. Kinson, Oliveira & van Loon 2021 , 2022 ). 

The VMC surv e y consists of ∼130 million sources, the identities
f the majority of which remain unknown. In Pennock et al. ( 2022 ),
nsupervised machine learning was used to cluster similar sources 
ogether in the radio-detected population of the VMC near-IR sources 
Pennock et al. 2021 ), showing that machine learning can be a
aluable tool in separating objects into different classifications, 
specially for separating dusty/evolved stars (such as YSOs, PNe, and 
ost-AGB/RGB) that are often confused with AGN and vice versa in
he optical and IR. This work is a continuation of these studies, where
e use supervised machine learning with multiwavelength data from 

V to far-IR to classify all of the sources in the VMC surv e y. In a
ollow-on paper, we will apply an unsupervised approach. 

This paper is laid out as follows: Section 2 outlines the photometric
urv e ys used in this work from which the features for the machine
earning algorithm are selected, as well as the spectroscopic data sets
rom which the data with known labels is selected as a training
et. Section 3 describes the machine learning algorithm used in 
his work, the choice of parameters and how it was trained. In
ection 4 , we explore the spatial distributions of the newly classified
ources across the VMC fields of the Magellanic Clouds. Then in
ection 5 , we test the classifier against sources with known classes

hat were not used in training in Sections 5.1 and 5.2 , as well as
xploring their distributions of the high-confidence classifications 
cross colour–colour/magnitude diagrams in the optical, near-IR and 
id-IR regimes in Section 5.3 . Furthermore, in Sections 5.4 and

.5 , we use the radio and X-ray-detected sources as an independent
heck to test the classifications, as the majority of X-ray and radio-
etected sources are expected to be extragalactic, and explore these 
opulations. We explore the classifications of Gaia low-resolution 
pectroscopically confirmed QSOs from Storey-Fisher et al. ( 2023 ) in
ection 5.6 and the classifications of spectroscopically and photomet- 
ically selected YSOs in the LMC from Kokusho et al. ( 2023 ) in Sec-
ion 5.7 . Then, in Section 5.8 , we explore the sources that have been
onfidently classed as Unknown by using the known photometric 
election techniques. Lastly, we summarize our results in Section 6 . 

 DATA  

achine learning algorithms require ‘features’, for each object, such 
s photometric measurements in various wavebands. Supervised 
achine learning requires an additional training set of known objects 
MNRAS 537, 1028–1055 (2025) 
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M

Figure 1. Area of the sky covered by the VMC (near-IR, red ), EMU ASKAP (radio, blue ), SMASH (optical, green ), SAGE (mid-IR, yellow ) surv e ys of the 
LMC (left) and SMC (right). The approximate centres of the Clouds are marked with a black ‘X’. 
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ith labels that can be used to learn from, in order to classify unseen
ata. Here, the photometry and the training sets are outlined. 

.1 Photometry 

n this study we use photometry obtained from dedicated observa-
ions of the Magellanic Clouds, from the optical SMASH (Nidever
t al. 2017 ), VMC (Cioni et al. 2011 ), Spitzer SAGE (Meixner et al.
006 ; Gordon et al. 2011 ), Herschel HERITAGE (Meixner et al.
010 ) and XMM–Newton (Sturm et al. 2013 ) X-ray and Australian
quare Kilometre Array Pathfinder (ASKAP) radio (Joseph et al.
019 ; Pennock et al. 2021 ) imaging surv e ys. Fig. 1 shows the
omparisons between the area co v ered by the VMC, EMU ASKAP,
MASH, and SAGE surv e ys of the SMC and LMC. Below we
escribe each of the individual surv e y data sets used in this work.
etails of how the UV/optical/IR surv e ys are combined to produce

he multiwavelength catalogue for the machine learning process will
e given in Section 3.1 . 
The X-ray and radio catalogues are not used in the machine learn-

ng, but as an independent check of the final source classifications,
s radio/X-ray sources tend to be extragalactic in origin, as opposed
o stars. Also, they are only a small fraction of the total sources so
ould introduce a lot of missing data if used as features. 

.1.1 Optical SMASH survey 

he Dark Energy Camera (DECam; Schumacher et al. 2010 ) on
OA O’ s 4-m Blanco telescope was used as part of the SMASH

Nidever et al. 2017 ) to map 480 square degrees of sky to depths
f ugriz ∼ 23.9, 24.8, 24.5, 24.2, 23.5 mag (Vega) at median seeing
f 1.22, 1.13, 1.01, 0.95, 0.90 arcsec, respectively. The main goal of
his surv e y w as to identify broadly distributed, low surf ace brightness
tellar populations associated with the stellar halos and tidal debris
f the Magellanic Clouds. The catalogue contains ∼ 360 million
bjects in 197 fields. Note that Nidever et al. ( 2017 ) adjusted
he DECam ugriz photometry to be comparable to SDSS and are
NRAS 537, 1028–1055 (2025) 

herefore ‘pseudo-SDSS’, ugriz bands. 
.1.2 Near-IR VISTA ma g ellanic clouds survey 

he Visible and Infrared Surv e y Telescope for Astronomy (VISTA;
alton et al. 2006 ) is a 4.1-m near-IR optimized telescope, which is

quipped with the VISTA InfraRed CAMera (VIRCAM; Emerson,
cPherson & Sutherland 2006 ) which is composed of a large array

f 16 detectors that fill about a 1.5 square degree field. 
The VMC surv e y (Cioni et al. 2011 ) is a near-IR deep, multi-

poch and wide-field study of the Magellanic Clouds, co v ering an
rea of about 170 deg 2 . VISTA observations for the VMC main
urv e y started in No v ember 2009 and ended in October 2018. It has
 spatial resolution of 1.0–1.1, 0.9–1.0, and 0.8–0.9 arcsec in the YJK s 

lters, respectively, where the two values specified for seeing indicate
aximum allowed seeing for crowded and uncrowded regions,

espectively. It also reaches a sensitivity at 5 σ level of about 22,
2 and 21.5 mag (Vega; in AB this is 22.5, 22.9, and 23.4 mag) in the
JK s bands, respectively. Its depth and coverage can be compared to

he VISTA Deep Extragalactic Observations (VIDEO; Jarvis et al.
013 ) surv e y, which was specifically designed to study galaxy and
luster/structure evolution up to z ∼ 4 in a 12 deg 2 area, reaching
epths of about 24.5, 24.4, and 23.8 mag (AB) at 5 σ detection level in
he YJK s bands, respectiv ely. The VMC data pro vide an opportunity
o expand on the effort of the VIDEO surv e y and co v er more area to
etter o v ercome cosmic variance, and has already pro v en successful
n disco v ering more AGN (e.g. Ivano v et al. 2016 ). This ho we ver
omes with the caveat of increased stellar confusion with the presence
f the LMC and SMC. 
The catalogues created from the VMC surv e y pro vide both

perture and PSF photometry, where PSF photometry reaches sources
n average 0.3 magnitudes fainter than aperture photometry. The
SF catalogue is created as described in Rubele et al. ( 2015 ) and are
ublicly available as part of VMC DR6. 1 2 The magnitudes in each
and are calculated from deep tile images, which are a combination
f single exposure images from different epochs. Due to the PSF
hotometry’s increased depth and ability to distinguish sources in
rowded regions, it is the PSF photometry that is used in this work. 

http://archive.eso.org
http://vsa.roe.ac.uk
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.1.3 Infrared SAGE and HERITAGE surveys 

he Magellanic Clouds were observed by Spitzer as part of the SAGE
urv e y of the LMC (Meixner et al. 2006 ) and SMC (Gordon et al.
011 ) which map 49 and 30 de g 2 , respectiv ely. It produced a list of
bout 8.4 million sources taken with IRAC filters 3.6, 4.5, 5.8, 8.0
m with an angular resolution of 2 arcsec. The faint limits for SAGE
re 18.3, 17.7, 15.7, and 14.5 mag, respectively. 

The Herschel Space Observatory (Pilbratt et al. 2010 ) was a 3.5-m
R telescope that was active from 2009 to 2013 and was sensitive
o the far-IR and submillimetre wavebands (55–672 μm). HERschel 
nventory of The Agents of Galaxy Evolution (HERITAGE; Meixner 
t al. 2010 ) used the Herschel ’s Photodetector Array Camera and
pectrometer (PACS, 100 and 160 μm; Poglitsch et al. 2010 ) and the
pectral and Photometric Imaging REceiver (SPIRE, 250, 350, 500 
m; Griffin et al. 2010 ) bands to image the LMC, SMC, and Magel-

anic Bridge. This surv e y is complementary to the SAGE surv e y. 

.1.4 All-sky surveys 

arious all-sk y surv e ys hav e also observ ed the Magellanic Clouds.
o we ver, this comes with the caveat of not reaching the same depths

s the Magellanic specific surv e ys. All-sk y surv e ys used in this
ork include optical Gaia (Gaia Collaboration 2023 ) and mid-IR 

llWISE and unWISE (Wright et al. 2010 ; Cutri et al. 2013 ; Schlafly,
eisner & Green 2019 ) surv e ys. 
The Gaia mission (Gaia Collaboration 2016 ) was launched on 

9 December 2013, with the aim of measuring the 3D spatial and
elocity distribution of stars, as well as determine their astrophysical 
roperties. The Gaia on-board system is designed to detect point- 
ike sources, but can detect extragalactic sources (Gaia Collaboration 
023 ) if their central region is sufficiently bright and compact. 
he latest data release, DR3 (Gaia Collaboration 2023 ), is based 
n 34 months of Gaia operations. The catalogue provides celestial 
ositions, proper motions, parallaxes, and broad band photometry in 
he wide G (centred on 650 nm), blue-enhanced G BP (centred on 
60 nm), and red-enhanced G RP (centred on 750 nm) pass-bands. 
his data release also includes class probabilities (QSO, galaxy, or 
tellar source) for 1.5 billion sources. 

WISE (Wright et al. 2010 ) is a telescope launched in 2009 to
epeatedly map the entire sky in IR. WISE mapped the whole sky
n four bands W 1, W 2, W 3, W 4 centred at 3.4, 4.6, 12, and 22
m, respectively, using a 40-cm telescope feeding arrays with a 

otal of four million pixels. The sensitivities of W 1, W 2, W 3, and
 4 correspond to Vega magnitudes of 16.5, 15.5, 11.2, and 7.9,

espectiv ely, in the all-sk y WISE surv e y. The AllWISE (Cutri et al.
013 ) programme extended the work of the WISE surv e y mission by
ombining W 1 and W 2 data from the cryogenic and post-cryogenic
urv e y phases to form the most comprehensive view of the mid-IR
ky currently available. W 3 and W 4 measurements remain unchanged 
rom the All-Sky Release because no additional data were included 
n those bands. 

Further addition to the WISE mission, is the unWISE (Schlafly 
t al. 2019 ) catalogue, which used the deep unWISE coadded images
uilt from five years of publicly available WISE imaging, as well as
mpro v ed modelling of crowded regions. This resulted in a catalogue
f ∼2 billion unique objects detected in the W 1 and/or W 2 channels,
eaching depths ∼0.7 mag fainter than those achieved by AllWISE. 

.1.5 X-r ay XMM–Ne wton 

n SMC-surv e y point-source catalogue was created from archi v al
MM–Newton data with additional newer observations from the 
ame facility (Sturm et al. 2013 ), which co v ers 5.6 deg 2 , including
he bar and eastern wing of the SMC. The catalogue contains 3053
nique X-ray sources with a median position uncertainty of 1.3 arcsec 
own to a flux limit of ∼10 −14 erg cm 

−2 s −1 . The majority of the
ources are expected to be AGN. One limitation of this surv e y is that
t only co v ers the central part of the SMC, and therefore does not
o v er the same breadth as the VMC surv e y. 

There is no similar X-ray catalogue specifically for the LMC. 
here is, ho we v er, an XMM–Ne wton serendipitous source catalogue

Webb et al. 2020 ), which is a collection of the sources detected in
ll the publicly available XMM–Newton observations. This catalogue 
ncludes observations in the direction of the LMC. 

.1.6 Radio ASKAP survey 

he EMU (Norris et al. 2011 ) is a wide-field radio continuum surv e y
hich uses the ASKAP (Johnston et al. 2008 ; Hotan et al. 2021 )

elescope. EMU’s primary goal is to make a deep (RMS ∼ 10
Jy beam 

−1 ) radio continuum surv e y of the Southern sk y, e xtending
s far north as + 30 ◦ declination, with a resolution of 10 arcsec. It is
xpected to catalogue about 70 million galaxies, including AGN up 
o the edge of the visible Universe. 

Two radio continuum images from the ASKAP surv e y in the
irection of the SMC were taken as part of the EMU Early Science
roject (ESP) surv e y of the Magellanic Clouds (Joseph et al. 2019 ).
he two source lists that were produced from these images by
oseph et al. ( 2019 ) contain radio continuum sources observed at
60 MHz (4489 sources) and 1320 MHz (5954 sources) with a
andwidth of 192 MHz and beam sizes of 30 arcsec × 30 arcsec
nd 16 . 3 arcsec × 15 . 1 arcsec , respectively. The median RMS noise
alues were 186 μJy beam 

−1 (960 MHz) and 165 μJy beam 

−1 

1320 MHz). The observations of the SMC were made with only
3 per cent and 44 per cent (for 960 and 1320 MHz, respectively) of
he full ASKAP antenna configuration and 66 per cent of the final
andwidth that was available in the final array, with which the LMC
as observed, so the resolution and depth is not as good as for the
MC observation. 
The LMC was observed at 888 MHz (Pennock et al. 2021 ) with

 bandwidth of 288 MHz taken on 2019 April 20 using ASKAP’s
ull array of 36 antennas (scheduling block 8532). The LMC was
bserved as part of the ASKAP commissioning and early science 
ACES, project code AS033) verification (DeBoer et al. 2009 ; Hotan
t al. 2014 ; McConnell et al. 2016 ) in order to investigate issues that
ere found in higher-frequency higher-spectral-resolution Galactic- 
SKAP (GASKAP; Dickey et al. 2013 ) survey observations, as well

s to test the rapid processing with ASKAPsoft (Whiting 2020 ). The
bservations co v er a total field of view of 120 deg 2 , with a total
xposure time of ∼12 h 40 m . They were compiled by four pointings
 ∼3 h 10 m each) with three interleaves, 3 each to result in more uniform
epth across the field − ef fecti vely 12 pointings. The three interleaves
 v erlap by ∼ 0 . 5 ◦ to impro v e the uniformity of sensitivity across the
eld. The largest angular scales that can be reco v ered in this surv e y
re 25–50 arcmin (McConnell et al. 2020 ). 

.2 Training sets for machine learning 

 set of known sources is required to train a supervised machine
earning classifier. We focused on using sources with spectroscopic 
bservations. The total number of sources for each class can be seen
MNRAS 537, 1028–1055 (2025) 
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Table 1. The number of sources for each class and the region of the Clouds 
they were spectroscopically observed in, as well as the references of the 
literature they originated from. (1) From own observations using SALT or 
SAA O’ s 1.9-m telescope; (2) Spitzer -spec surv e ys (Ruffle et al. 2015 ; Jones 
et al. 2017 ); and (3) From a Simbad (Wenger et al. 2000 ) search of ‘PM’ stars 
in the VMC footprint that had listed spectral type and reference given. 

Class SMC LMC References 

AGN 303 639 (1); (2); Kozłowski et al. ( 2012 ); Flesch 
( 2019 ); 

Geha et al. ( 2003 ); Kozłowski et al. ( 2013 ); 
Esquej et al. ( 2013 ); Ivanov et al. ( 2016 ); 

Ivanov et al. ( 2024 ) 
Galaxies 124 430 (1); (2); Jones et al. ( 2009 ) 
OB 417 1073 (2); Walborn et al. ( 2014 ); Evans et al. 

( 2015a , b ); 
Lamb et al. ( 2016 ); Grin et al. ( 2017 ); 

Roman-Duval et al. ( 2019 ); 
Dorigo Jones et al. ( 2020 ) 

RGB 519 489 (2); Cole et al. ( 2005 ); Neugent et al. ( 2020 ) 
Parisi et al. ( 2009 , 2010 , 2022 ); 

De Bortoli et al. ( 2022 ) 
H II /YSOs 86 459 (2); Seale et al. ( 2009 ); Oliveira et al. 

( 2011 , 2013 ); 
Oliveira et al. ( 2019 ); van Gelder et al. 

( 2020 ) 
PNe 53 50 (2); Shaw et al. ( 2001 ) 
AGB 165 221 (2); van Loon et al. ( 1998 ); 

Groenewegen & Blommaert ( 1998 ); 
van Loon, Zijlstra & Groenewegen ( 1999a ); 
van Loon et al. ( 1999b , 2005 , 2006 , 2008 ); 

Kamath, Wood & Van Winckel ( 2014 ) 
RSG 44 70 (2); Neugent et al. ( 2020 ) 
pAGB/RGB 46 33 (2); van Loon et al. ( 2008 ); Kamath et al. 

( 2014 ) 
PM 78 303 (3) 

a  

a  

p  

c  

I

 

w  

H

2

T  

u  

m  

v  

r
 

l  

2  

2  

P  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/537/2/1028/7954762 by guest on 15 February 2025
n Table 1 . The training sets for the SMC and LMC are made available
longside this paper as online supplementary material. 

We chose to focus on ten classes: AGN; galaxies; stars of O and
 type (OB); RGB stars; AGB; red supergiants (RSG), post-AGB
nd post-RGB stars (pAGB/RGB); PNe, YSOs and compact H II

egions (H II /YSOs) and Milky-Way high proper-motion stars (PM).
hese classes were chosen for having larger numbers of sources with
lassifications based on spectroscopy and/or due to their tendency to
e mistaken for AGN (dusty and/or emission-line sources) and vice
ersa. 

Using spectroscopically observed sources, ho we ver, introduces
ias into the training sample, since the sources observed tend to be
hosen based on colour cuts that similar previously observed objects
onform to. Furthermore, there is also a bias in magnitude, as the
aintest sources would be too faint for spectroscopy. This therefore
eaves the rarer/unusual and fainter versions of each class to not be
bserved, which would make the machine learning algorithm less
ertain about these sources. 

A potential problem could be that classes that have little to no
pectroscopic observations, and therefore not trained upon, could be
isclassified as one of the classes trained upon if they are similar

nough. A class that encompasses these sources that are not part of
he known classes could be needed to prevent confusion. 

.2.1 South African Astronomical Observatory 1.9 m 

e observed 174 new optical spectra (see online Appendix Section A
or full list) at the South African Astronomical Observatory (SAAO)
.9-m telescope with SpUpNIC (Spectrograph Upgrade: Newly
mpro v ed Casse grain; Crause et al. 2019 ) during observing runs
n 2019 and 2021. Grating 7 (grating angle of 16 ◦) and the order
locking ‘BG38’ filter were used, delivering a resolving power
 = 

λ
�λ

∼ 500 o v er a wav elength range of 3800 Å–9000 Å. Dome-
ats and bias images were taken at the beginning of each night. The
uAr lamp was used for wavelength calibration. Three 600 s (300 s

or sources brighter than ∼ 16 mag) exposures were obtained for
ach source. The standard stars (EG 21, Feige 110 or LTT 1020;
amuy et al. 1994 ) were observed on the same night under the same

onditions for 30 s. 
The data was processed using the standard IRAF 4 tools (Tody 1986 ,

993 ). 
The sources that we observed with the 1.9m telescope, and have

een classified based on their optical spectroscopy, were added to the
raining set. This added 26 sources (18 AGN, 7 galaxies, 1 H II /YSO).

.2.2 SALT 

e also observed 40 sources with the Southern African Large
elescope (SALT) (Buckley, Swart & Meiring 2006 ), located in
utherland, South Africa that has an ef fecti ve diameter of 7–9 m.
ALT was used to observe AGN candidates that had the potential

o be similar to SA GE0536A GN (Pennock et al. 2022 ; Pennock
t al., in preparation). The Robert Stobie Spectrograph (RSS; Burgh
t al. 2003 ; Kobulnicky et al. 2003 ) was used, a combination of
hree CCD detectors with total 3172 × 2052 pixels and spatial
esolution of 0 . 1267 arcsec per pixel. We used the long-slit with
idth 1 . 5 or 1 . 25 arcsec , grating PG0300 or PG0900 and an Argon
NRAS 537, 1028–1055 (2025) 

 IRAF is distributed by the National Optical Astronomy Observatory, which is 
perated by the Association of Universities for Research in Astronomy, Inc., 
nder cooperative agreement with the National Science Foundation. 
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rc lamp. Initial processing (basic CCD data reductions) was done
utomatically by the SALT pipeline (Crawford et al. 2010 ). We
rocessed these data by performing cosmic ray remo val, wav elength
alibration and source extraction also using also using the standard
RAF tools (Tody 1986 , 1993 ). 

The sources we observed with SALT that have been classified
ere added to the training set. This numbered 22 sources: 1 AGB, 1
 II /YSO, 1 galaxy, and 19 AGN. 

.2.3 SAGE-spec 

he Infrared Spectrograph onboard the Spitzer Space Telescope was
sed to observe the LMC and SMC in low and high resolution
odes for the wavelength range of 5–38 μm. The resolving power

aries between 60 and 130 for low resolution mode, whereas high-
esolution mode has resolving power of ∼ 600. 

All the spectra obtained by Spitzer within the SAGE footprint were
ooked at as part of the SAGE-Spec project. In the SMC (Ruffle et al.
015 ), this surv e y found 58 AGB stars, 51 YSOs, 4 post-AGB objects,
2 RSGs, 27 undefined stars (of which 23 are dusty OB stars), 24
Ne, 10 Wolf-Rayet (WR) stars, 3 H II regions, 3 R Coronæ Borealis
R CrB) stars, 1 blue supergiant and six other objects. 

In the LMC (Jones et al. 2017 ), this surv e y observ ed ∼ 800 sources,
he majority of which are YSO and H II regions and (post-)AGB stars,
Ne and massive stars. Also observed were two SNRs, a nova and
everal background galaxies. 
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.2.4 Extragalactic classes 

here are 657 spectroscopically observed AGN from the Milliquas 
atalogue of Flesch ( 2015 , b ) in the field of the VMC footprint of
he LMC. The largest contributions are from Kozłowski et al. ( 2012 ,
013 ), Geha et al. ( 2003 ), Esquej et al. ( 2013 ) and Ivanov et al.
 2016 ), contributing 547, 24, 23, and 10 objects, respectively. 

There are 240 spectroscopically observed AGN from the Milliquas 
atalogue in the field of the VMC footprint of the SMC. The largest
ontributions are from K ozłowski, K ochanek & Udalski ( 2011 ),
ozłowski et al. ( 2013 ), and Ivanov et al. ( 2016 ), contributing 194
nd 10 objects, respectively. 

Galaxies (with no signs that they are hosting AGN) were taken 
rom the 6dFGS surv e y (Jones et al. 2009 ). The observations for
his surv e y were carried out using the Six Degree Field (6dF)
bre-fed multi-object spectrograph at the UK Schmidt Telescope 
UKST; Siding Spring Observatory, Australia) o v er 2001 May to 
006 January (Jones et al. 2005 ). Target fields co v ered ∼ 17 000 deg 2 

f the southern sky more than 10 ◦ from the Galactic Plane. This
urv e y data ho we ver comes with the caveat that it is limited to the
rightest (it is complete to total extrapolated 2MASS magnitude 
imits of 13.75, 12.95, 12.65 mag for J , H , and K , respectively)
nd closest (median redshift of whole surv e y is z ∼ 0 . 053) of 
alaxies. 

To further augment the extragalactic sample, galaxies and AGN 

ere added from the Galaxy and Mass Assembly (GAMA Driver 
t al. 2011 ; Hopkins et al. 2013 ) surv e y, specifically the GAMA09
egion, which was also observed with VISTA as part of the VIKING
urv e y (de Jong et al. 2017 ) 5 The SDSS DR16 surv e y (Blanton et al.
017 ; Ahumada et al. 2020 ) co v ered this re gion, and spectroscopi-
ally observ ed e xtragalactic sources and further separated them into 
alaxies and AGN, adding 8504 and 2337 sources, respectiv ely. F or
hese sources Sptizer IRAC band and Herschel 250 um were left as

issing data. 

.2.5 Galactic and ma g ellanic classes 

or the training sample, sources that are often mistaken for AGN were
eeded, whilst also including other sources that are more distinct 
rom AGN that are pre v alent throughout the Magellanic Clouds.
here have been many spectroscopic surveys of the LMC and SMC,
enerally looking at specific types of stellar objects that can be found
ithin the Magellanic Clouds. This led to the accumulation of 1490 
B stars, 1008 RGB stars, 545 YSO or compact H II regions, 386
GB stars, 114 RSGs, 103 PNe, 79 pAGB/pRGB and 382 high 
roper-motion/foreground stars (see Table 1 for details). A large part 
f these sources were from the SAGEspec surv e ys (Ruffle et al.
015 ; Jones et al. 2017 ), which observed 209 and 862 sources in the
irection of the SMC and LMC, respectively. 
The more common stars (e.g. main-sequence M-type stars 2700–

800K) ho we ver tend not to be spectroscopically observed as
hey are an already well observed/studied class of objects (in the 

ilky Way), whereas spectroscopic studies preferentially target (and 
onfirm the identities of) the rarer less well-studied stellar classes, 
herefore leading to a lack of main-sequence stars for training. They 
re ho we ver distinct from AGN, with a lack of emission in the
R, so should not be mistaken for extragalactic sources, and be 
referentially associated with the stellar sources based on proper 
otions and colours. 
 Based on observations made with ESO Telescopes at the La Silla Paranal 
bservatory under programme ID 179.A-2004. 

m

6

The sources with high-proper motion and that are in the foreground
ere identified using a Simbad (Wenger et al. 2000 ) search for ‘PM’

tars in the VMC footprint that had a listed spectral type and reference
iven. This yielded 78 and 303 sources for the SMC and LMC,
espectively, with a cross-match with a source in the VMC catalogue
ith a 1 ′′ search radius. 

.2.6 Unknown class 

ot all classes can be accounted for, as some classes have too few
pectroscopically observed sources to create a robust training sample 
rom, and others are simply unkno wn. Ho we ver, all the sources must
e classified as one of the classes it has been trained upon, which
ould inevitably lead to contamination within each class. Therefore, 

o ensure that these sources are not classified incorrectly, an Unknown 
lass is created for the LMC and SMC. This was done by randomly
electing a number of sources (same amount as the largest training
et, galaxies, at 9118) from the VMC catalogues for both the LMC
nd SMC. This creates a sample of sources that have no structure in
eature space as it includes a mix of everything. This should allow
he clearly defined classes in feature space (collection of features, 
n this case photometry, that are used to characterise the different
lasses) to be classed correctly whilst setting the sources that lay
way from the known classes to be set as Unknown. Note that none
f the spectroscopically observed sources are in this class. 
We found that creating this class was necessary to ensure that

aint and/or difficult to classify sources were not (erroneously) 
llocated to one of the other classes by the machine learning
lgorithm (i.e. that this class is needed to fully capture our remaining
ncertainty/ignorance). 

 PR  O B  ABILISTIC  R A N D O M  FOREST  

 random forest (Breiman 2001 ) is a supervised machine learning
lgorithm that can be used for both classification and regression 
roblems. The algorithm builds several decision trees (a decision 
ree consists of a series of nodes where at each node a condition is
iven that is either true or false) independently and then averages
he predictions of these to obtain the final prediction, as well as the
robability the prediction is correct from the fraction of trees that
gree with the final prediction. This reduces variance o v er using a
ingle estimator and creates an o v erall more stable model. It is called
 random forest because randomness is injected into the training 
rocess of each individual tree via a method called ‘bagging’. This
ethod splits up the training set into randomly selected subsets, 

nd each decision tree is then trained on one of those subsets.
urthermore, at each node of the decision tree, only a randomly
elected subset of the features is considered. 

The Probabilistic Random Forest 6 (PRF; Reis, Baron & Shahaf 
018 ) is a random forest algorithm that can handle and take into
ccount measurement uncertainties and missing data (where data 
s missing that is required for a condition at a node, the PRF will
ropagate down both true and false paths with equal weight given to
he probability that either path is correct). Compared to an ordinary
andom forest it has been pro v en to pro vide an up to 10 per cent
ncrease in classification accuracy with noisy features and proven 
o be more accurate than the original random forest when up to 45
er cent objects in the training set are misclassified. 

This algorithm was created in Python and requires the Python 
odule SCIKIT-LEARN (Pedregosa et al. 2011 ) to run. 
MNRAS 537, 1028–1055 (2025) 

 PYTHON code can be found here: https:// github.com/ ireis/ PRF 
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M

Table 2. Parameters taken from various surveys to act as features in the 
PRF algorithm. For each parameter the error on the values is also taken from 

the corresponding surv e ys. New features were created by subtracting each 
feature from all the other features to create colours. This did not include the 
sharpness (a measure of the difference between the observed width of the 
object and the width of the PSF model, where stars should have a sharpness 
value of ∼0 and resolved objects values of > 0. Sharpness values < 0 indicate 
artefacts such as bad pixels or cosmic ray impacts) and proper motions in RA 

and DEC (pmRA and pmDEC, respectively). 

Parameter Units Surv e y 

Y PSF mags (Vega) VMC 

J PSF mags (Vega) VMC 

K s PSF mags (Vega) VMC 

Y sharp PSF – VMC 

J sharp PSF – VMC 

K s sharp PSF – VMC 

u mags (Vega) SMASH 

g mags (Vega) SMASH 

r mags (Vega) SMASH 

i mags (Vega) SMASH 

z mags (Vega) SMASH 

sharp – SMASH 

pmRA mas/yr Gaia DR3 
pmDEC mas/yr Gaia DR3 
G mags (Vega) Gaia DR3 
G BP mags (Vega) Gaia DR3 
G RP mags (Vega) Gaia DR3 
IRAC 3.6 μm mags (Vega) SAGE 

IRAC 4.5 μm mags (Vega) SAGE 

IRAC 5.8 μm mags (Vega) SAGE 

IRAC 8.0 μm mags (Vega) SAGE 

unW1 mags (Vega) unWISE 

unW2 mags (Vega) unWISE 

W 1 mags (Vega) AllWISE 

W 2 mags (Vega) AllWISE 

W 3 mags (Vega) AllWISE 

W 4 mags (Vega) AllWISE 

SPIRE PSW 250 μm MJy HERITAGE 
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.1 Creating the multiwavelength data set 

he base of the multiwavelength data set is the near-IR VMC
SF surv e y catalogue. All coordinate matchings were made to the
MC coordinates. We matched the VMC catalogue with SMASH

Nidever et al. 2017 ), Gaia DR3 (Gaia Collaboration 2023 ), SAGE
Meixner et al. 2006 ; Gordon et al. 2011 ), unWISE (Schlafly et al.
019 ) and AllWISE (Cutri et al. 2013 ) using TOPCAT (Taylor 2005 ).
he parameters of different surv e ys in the data set can be seen in
able 2 . The cross-matchings between all catalogues were done
ith a 1 ′′ search radius. Note that the parameters from X-ray and

adio surv e ys hav e not been used as features, and will be used as an
ndependent check (e.g. they should fa v our extragalactic sources) for
he classifications. 

Some of the parameters required calculation. For instance, the
nWISE catalogue only provided fluxes rather than Vega magnitudes
ike the rest of the catalogues. For consistency the fluxes were
onverted using the method recommended in the notes of the table
n CDS 

7 (Centre de Donn ́ees astronomiques). The fluxes in Vega
anomaggies (nMgy; Finkbeiner et al. 2004 ) were converted to Vega
agnitudes using m = 22 . 52 . 5 log (flux ). These fluxes showed slight

iscrepancies with the AllWISE values and a correction was applied
NRAS 537, 1028–1055 (2025) 
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a  

h  

t  
see Schlafly et al. 2019 ) of subtracting 0.004 mag and 0.032 mag
rom unWISE W 1 and unWISE W 2, respectively. The differences in
he values of W 1 and W 2 bands between the AllWISE and unWISE
atalogues is, as expected, centred around 0. Differences beyond this
ould be explained by variability. Where there are no differences,
his should not affect the classifications as no new information is
eing provided, so using the feature again, once from AllWISE and
hen once from unWISE, would make no difference in splitting up
he data. 

Other parameters that had to be calculated were colours between
ll photometry bands and their corresponding errors, which were
alculated with standard propagation of errors. Note that if, for
xample, Y − J was calculated, the reverse, J − Y , would not be
alculated and added as a feature. This led to a total of 237 features.

The far-IR measurement is taken from the SPIRE PSW 250 μm
mages of the SMC and LMC that were taken with Herschel , that
re first smoothed with a 2D box kernel across ten pixels. After
moothing the image, the flux values were taken from the image at
ach co-ordinate, where the median within a 5 arcsec radius was
aken. This provides a measurement of the background flux instead
f the individual source flux, where the flux is expected to be higher
hen looking through the Magellanic Clouds. 
Parameters which were not observed for a source in a given survey

ere assigned null values within their respective survey data bases,
hich differs between surv e ys. F or e xample, the VMC applies the

arge ne gativ e value of −9.99999 × 10 8 , whereas SMASH represents
 null value as 99. It is also commonplace to leave null parameters
nassigned or to assign a value of 0. Therefore, these data must be
omogenized prior to the implementation of the PRF. To achieve
his, we assigned the standard null value, ‘ N aN ’, to all null values
cross our input data, regardless of their origin. 

.2 Extinction 

he effect of extinction from the Magellanic Clouds (e.g. Bell
t al. 2019 , 2020 , 2022 ) is a non-explicit factor that is included
n the photometry/colours that help to separate the stellar from the
 xtragalactic. Galactic e xtinction from the Milk y Way (e.g. Schle gel,
inkbeiner & Davis 1998 ; Schlafly & Finkbeiner 2011 ), though
inor in this case compared to the Clouds, is also a factor that

eeds to be taken into consideration. 
Ho we ver, it is not straightforward to correct for LMC/SMC

xtinction, because it is unknown in advance which objects are
xtragalactic and which belong to the LMC or SMC. The idea of this
lassifier is that it can take the raw photometric data, with examples
f sources from across the Clouds affected by different amounts
f extinction, and learn from this. This is why it is important to
ave spectroscopically classified extragalactic sources right across
he Clouds, so that the PRF is appropriately trained to recognise
uch populations even in cases of substantial foreground reddening. 

As shown in Section 3.3.6 and Fig. 4 , the far-IR HERITAGE
PIRE PSW 250 μm average flux density at each source position is
hown to be the most important feature for the classifier. This band
races the emission from cold dust across the Clouds (responsible
or the extinction of other bands) and provides our classifier with
nformation related to the reddening that is likely being used to aid
he classification of different source classes, including extragalactic
ources that lie behind the central regions of the Clouds. Furthermore,
 higher average flux density would tend to be found in areas of
igh star-formation (found in the centre of the Magellanic Clouds),
herefore the far-IR feature would most likely bias the classifier

https://cds.unistra.fr
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ositi vely to wards young stellar populations, and ne gativ ely bias
gainst background galaxies and AGN. 

.3 Training 

n this section, we discuss the various aspects of the training of the
lassifiers, including the configuration of the input training set and 
he PRF parameter choices. 

.3.1 Inputs 

he data were arranged in three configurations, individual ‘LMC’ 
nd ‘SMC’ data sets, as well as a further ‘MC’ (LMC and SMC) data
et. Each configuration had two versions, one with no colour features 
nd another with colour features. Individual classifiers are trained for 
he SMC and LMC due the different stellar populations, population 
istories, extinction distributions and metallicities (e.g. Rubele et al. 
012 ; Rezaeikh et al. 2014 ; Rubele et al. 2018 ; Bell et al. 2019 ,
020 , 2022 ) between the two Clouds. Therefore, the Magellanic 
lasses were specifically trained for their respective galaxy, but the 
ame extragalactic and foreground stars training sets were used for 
raining both classifiers. 

For training the classifiers, data sets were split into features, X, 
rrors on features, d X, and class, y. 

To ascertain the accuracies of the trained classifiers each data set
as split into training and testing sets, where 75 per cent of the data
ere trained on and 25 per cent were retained to test the classifier
n. For each of the training runs the data split was randomized. Note
hat when testing a machine learning model a training data set is
ften split into training, validation and test set. A validation set is
sed to tune the parameters of the model, whilst a test set is used to
est the final model. Both these data sets are not trained upon. In the
nterest of not splitting the different sets into too small groupings, 
nd therefore not providing a good overview of how well the trained
lassifier works, we combined the validation and test sets together 
nto an o v erall ‘test’ set. The configuration of the training and test
ets were then randomized o v er multiple runs of tuning and testing
he classifier, so that the classifier is not o v erfitting to one training
et. 

.3.2 Probability threshold parameter 

he probabilistic random forest classifier has parameters that can be 
aried. Most parameters are set to default. 

The probability threshold parameter, p th , determines the prob- 
bility threshold at which to stop propagating along a branch. 
n an ideal PRF, p th = 0, where all objects propagate along all
ranches to all terminal nodes, unlike p th = 1 which denotes a
lassical RF, where each object propagates to only one terminal 
ode. The former requires a higher amount of computation time, 
nd for any given object there may be nodes with small propagation
robability. Stopping the propagation at these nodes reduces the run 
ime without decreasing o v erall performance. Reis et al. ( 2018 ) found
hat reducing the probability threshold below a value of p th = 0 . 05
oes not significantly impro v e the prediction accurac y, and only
ncreases computation time, so we used this value in our work. 

.3.3 Number of trees parameter 

o determine the optimum number of trees for the PRF, for
ach of the data sets, the data set was split into training and
esting and then the classifier was trained on this at n trees =
 , 5 , 10 , 25 , 50 , 100 , 200 , 500, and then the score (fraction of correct
lassifications when the classifier is used on the test set) was
alculated. It should be noted that since the extragalactic sources 
ominate the test set, the score therefore is dominated by the
 xtragalactic accurac y, and the score is not representativ e of all
lasses. Next, the whole data set was split randomly again and then
he classifier was trained again on the different number of trees. This
s done for five iterations for each n trees and then the score is averaged
or each value of n trees . 

From this it was seen that for all data set configurations after
 trees > 100 the score for each classifier plateaus. Therefore the value
f the number of trees was set to n trees = 100. This was done for
raining sets with and without colour information and it was found
hat the o v erall accurac y/score is greater when colour features are
ncluded. It was also found that the classifier trained and tested on
he ‘MC’ training data set was found to have a lower accuracy than
he classifiers trained and tested on the individual ‘LMC’ and ‘SMC’
raining data sets. 

.3.4 Balanced versus imbalanced data sets 

 balanced training set would have all classes roughly equal in size.
n imbalanced training set would have large differences between 

lass sample sizes. This imbalance can cause a poor predictive perfor- 
ance for the minority classes (e.g. Khoshgoftaar, Golawala & Hulse 

007 ; More & Rana 2017 ), as most machine learning algorithms
perate under the assumption of an equal sample size for each class.
Ensemble methods such as random forests can mitigate the effects 

f imbalanced data sets by training each tree on an independently 
andomly selected subset of the training set and then combining the
esults of all the trees together. Ho we v er, for e xtremely imbalanced
ata sets, when randomly selecting a subset to train a tree on, if a
inority class is too small then only a few or even none at all of the
inority class may be selected for a particular tree, meaning there
ill be trees that have not seen the minority class at all, so will not
no w ho w to classify them. This ef fect can be mitigated by balancing
he data set. 

Balancing the data set can either be done by downsampling, which
educes all the class sizes to the smallest class size, or upsampling,
hich increases/augments the minority class with synthetic data 

o that all the class sizes are the same as the largest class size.
ownsampling works well if spread in parameter space is preserved 

such as in Kinson et al. 2021 , 2022 ), ho we ver, comes with the caveat
f potentially losing important information if the training sets are 
eavily imbalanced and therefore will not be used here. Upsampling 
aintains the same amount of information (though with the possible 

aveat of overfitting due to replication of non-rele v ant features) so
his strategy was adopted. See online Appendix Section B for the
omparison between not balancing, downsampling and upsampling 
he training set effects the classifier’s precision and recall. 

Upsampling can be done in one of two ways. Either by using
achine learning on the minority class to generate synthetic data 

oints based on the real data of the minority class sample; or by
andomly copying objects from the minority class sample to increase 
he sample size. The latter method was used as it maintains that only
eal data is used whilst balancing the data set so that each tree will
andomly sample sources from each class. To do this the ‘resample’
unction of PYTHON ’s SCIKIT-LEARN module was used to upsample 
ll the class samples to the same size as the majority class, so that all
lasses have an equally sized training set. 
MNRAS 537, 1028–1055 (2025) 
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The SMC and LMC training samples were upsampled to the size
f the galaxy/Unknown class. This was only done after the training
ample was split into training and test sets, and only on the training
ets. This process was so that the same objects did not end up in
oth the training and test set. This was trained and tested three times
nd the results averaged. From this we found that the addition of
he upsampling o v erall increased the number of confident ( P class >

0 per cent) correct classifications, especially for those with the
maller training sets. 

Note that an imbalance in the data set can also be caused
y bias within the classes themselves. In this case, it would be
election bias of the sources being bright enough in the optical to
e spectroscopically observed. We do not address this issue in this
aper as it is beyond the scope of our work and is due to limiting
o the spectroscopic data that are already in hand. It is, ho we ver,
omewhat mitigated by the inclusion of the Unknown class, which
as found to decrease the number of confident wrong predictions.
ne way this could be impro v ed upon is by finding suitable, brighter

argets in the Milky Way for some classes, for example, RGB stars
f SMC metallicity in the globular cluster 47 Tucanae. Another is
y spectroscopically observing more sources that are not necessarily
right enough in the optical, but perhaps instead in the IR, with a
elescope such as the recent JWST (Gardner et al. 2006 ). 

.3.5 Final data configuration 

he o v erall accurac y does not tell one how the classifier performs on
ndividual classes, this can be shown through the use of confusion

atrices. A confusion matrix shows the comparison between the true
abels ( y -axis) versus the predicted labels ( x -axis). A perfect classifier
ould show a value of 1 (100 per cent) in a diagonal line from top left

o bottom right of the confusion matrix, which represents the recall
the ratio of tp 

tp+ f n 
, where tp is the number of true positives and f n

s the number of false ne gativ es) of each class, whilst all the other
alues would be 0 (0 per cent). This would show that all classes have
een predicted correctly. The values for an entire row should sum to
, showing the distribution of class predictions for each class. 
The final data set configuration to be trained upon was for

eparate classifiers for the LMC and SMC, where both data sets
ill share extragalactic sources from both regions, whilst keeping

tellar sources specific to the Cloud they are from. The PRF has
00 trees. As the PRF randomly selects a subset of sources from
he training set to train from for each decision tree, each run of
he classifier creates different trees. How it randomizes the selection
an be locked in by setting a ‘random seed state’. The classifier
as trained and tested on the data set ten times, using ten different

andom seed states, to create ten confusion matrices. The values
ere then averaged to create an ‘average’ confusion matrix. The

onfusion matrix for the SMC-trained classifier tested on SMC data
an be found in Fig. 2 (right panels), and the confusion matrix for
he LMC-trained classifier tested on LMC data can be found in Fig.
 (left panels). 
The o v erall accurac y (score) of the SMC classifier is found to be

.79 ± 0.01, and the o v erall accurac y of the LMC classifier is found
o be 0.87 ± 0.01. For both classifiers the AGN class has one of the
ighest recall, ∼ 90 per cent of all AGN in the test set are classified
orrectly for the SMC and LMC. For the AGN misclassified as other
ources, they are most often misclassified as galaxies, which is not
nexpected. The precision (the ratio of tp 

tp+ fp 
, where fp is the number

f false positives) of the AGN class is not as great, as other sources
re misclassified as AGN. For the LMC sightlines ∼3 per cent of
NRAS 537, 1028–1055 (2025) 
alaxies and ∼9 per cent of PNe are misclassified as AGN. Ho we ver,
or the SMC sightlines, ∼6 per cent of PNe, ∼8 per cent of H II /YSOs,

5 per cent of pAGB/pRGB, ∼4 per cent of galaxies, ∼2 per cent
f AGB and ∼1 per cent of RGB and OB are misclassified as AGN.
verall, most AGN will be classified correctly, with some expected

onfusion between AGN and galaxies, which is not unexpected as
GNs are hosted in galaxies with varying levels of obscuration and

uminosity of the AGN emission, making it hard to discern a heavily
bscured or low luminosity AGN from a galaxy with no AGN. There
ill, ho we ver, be some stellar interlopers, most often PNe. Though,
hen limited to only the high confidence sources ( > 80 per cent
robability of class being correct), as seen in the bottom panels of
ig. 2 , we see that the precision is impro v ed as only ∼1 per cent of
alaxies are misclassified as AGN for both SMC and LMC classifiers,
nd only ∼5 per cent of PNe are misclassified as AGN for the SMC
lassifier. 

The recall of the post-AGB/RGB class is the worst (39 per cent
nd 44 per cent for the SMC and LMC, respectively), though when
estricting to high confidence sources it is then PNe that have the
orst recall ( ∼88 per cent) for the LMC classifier. For the SMC and
MC, post-AGB/RGB stars are mostly misclassified as other stellar
ources, with only ∼5 per cent ( < 1 per cent for high confidence
ources) misclassified as AGN for the SMC, and < 1 per cent for
he LMC. It is not surprising that post-AGB/RGB have the lowest
ecall, since they are intrinsically one of the rarest source populations
n our fields and thus our spectroscopic sample is also limited to a
mall number of examples (46 and 33 sources in the SMC and LMC
espectively, with only 75 per cent of these used for training) and is
ikely a biased sample that does not accurately probe the full range
f source properties for this class. With the upsampling, it is possible
hat the classifier has been o v erfit to this class. 

Simplifying the confusion matrix by combining the classes into
xtragalactic, Magellanic, PM and Unknown, as seen in Fig. 3 , shows
hat, when restricting to probabilities > 80 per cent, the classifier is
orking well. 99.8 per cent and 99.9 per cent of all extragalactic

ources are predicted as extragalactic, for the LMC and SMC
elds, respectively. These confusion matrices show that most of

he misclassification occurring is not between extragalactic and
agellanic classes, but within them, showing that in instances where

he classifiers do not obtain the correct class, it will likely classify it
s either within or outside the Clouds correctly. 

The misclassification of stellar sources as AGN, and AGN as
tellar sources, reflects what has been found anecdotally in the

agellanic Clouds. Classifications based on photometry have led to
tars masquerading as AGN and vice versa in the Magellanic Clouds,
uch as SA GE0536A GN (Hony et al. 2011 ; van Loon & Sansom
015 ) and SA GE0534A GN (Pennock et al. 2022 ), two AGN which
ere first thought to be evolved stars in the LMC, and Source 5 and
ource 8 from the study of a small sample of AGN in Pennock et al.
 2022 ), which were revealed to be stars in the SMC instead. These
ources are within the data sets to be trained upon, which increases
he likelihood the PRF would classify similar sources correctly, but
t is possible their small number might not be enough. 

Overfitting of a machine learning model can generally be spotted
y using the classifier on the training set, and if the performance is
uch better than on the test set, then the model is o v erfitting. F or the
MC classifier used on the SMC training set, the av erage accurac y
as 0.92 ± 0.01, and for the LMC classifier used on the LMC

raining set the average accuracy was 0.88 ± 0.01. Both classifiers
nly performed marginally better on the training sets compared to
he test sets (0.90 ± 0.01 for the SMC and 0.87 ± 0.01 for the LMC),
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Figure 2. Confusion matrix of final classifier trained and tested on the LMC (left) and SMC (right) data sets. The top panels, (a) and (b), show all sources, whilst 
the bottom panels, (c) and (d), are restricted to sources that were classified with probabilities > 80 per cent. This data set configuration includes extragalactic 
and foreground sources from both the LMC and SMC, but Magellanic stellar sources only from the respective Clouds. 
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.3.6 Feature importance 

he PRF algorithm can calculate o v erall feature importance for the
ntire classifier. This level of importance is calculated as ‘mean 
ecrease impurity’, which is defined as the total decrease in node 
mpurity (weighted by the probability of reaching that node, which 
s approximated by the proportion of samples reaching that node), 
v eraged o v er all trees o v er the ensemble (Breiman 2001 ). In other
ords, how well each feature separates the sample into the expected 

lasses (the decrease in class impurity). The values of the feature 
mportances are then normalized, such that they all sum to one. 

The classifiers are trained on the full data sets for SMC and LMC,
rom which the feature importances were calculated. This was then 
epeated ten times and the feature importances were then averaged 
or each feature. The top 15 ranked feature importances for both 
he SMC and LMC classifiers can be seen in Fig. 4 , the full list
f feature importances are available as a data product alongside the 
aper. For both the SMC and LMC classifiers the top 15, whilst
 a
n a different order, only have three features not in common. The
eature importance plateaus with a slight decline after this towards 
he least important features. The full list of features and importances
s available as online supplementary material. Note that feature 
mportances are only calculated for all classes, and not individual 
lasses. 

VMC photometry and colours rank high amongst the feature 
mportance, most likely due to all sources having at least one
bservation in the YJK s bands. However, it is unlikely that is the
ole reason for their high importance, therefore the colours and 
hotometry are providing good distinction between the sources 
s well, showing the near-IR is a powerful resource in separating
ifferent classes. 
Far-IR background emission is either the top feature or close to it.

s discussed in Section 3.2 , this is most likely due to far-IR being
sed as an analogue of extinction, which would affect the photometry
n bluer bands for where far-IR flux density is higher. Also, far-IR is
MNRAS 537, 1028–1055 (2025) 

n indicator of how close to the centre of each of the Clouds a source 
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Figure 3. Simplified confusion matrix of final classifier trained and tested on the LMC (left) and SMC (right) data sets, restricted to sources that were classified 
with probabilities > 80 per cent. The AGN and galaxy classes have been combined into the ‘Extragalactic’ label. The Magellanic stellar classifications have been 
combined into the ‘Magellanic’ label. 

Figure 4. Top 15 important features for the SMC (left) and LMC (right) 
classifier. Note that, whilst the top 15 features are in a different order, they are 
almost all the same features for both the SMC and LMC classifier. The bars 
are colour-coded to represent the surv e y origins, where green is SMASH, 
blue is Gaia , red is VMC, purple is unWISE, grey is HERITAGE and brown 
represents a colour calculated from bands in different surv e ys. 
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s (higher far-IR nearer the centre), where stellar density is higher
loser to the centre and thus a source is more likely to be a star rather
han a background extragalactic object. Away from the Clouds, at the
dges of the surv e y area, there is little to no far-IR emission from the
louds and a source is more likely to be a background extragalactic
bject rather than a star. 
Because all of the sources used for training have classifications

ased on spectroscopy, this means that they tend to be bright
nough to be observed with Gaia , hence why the Gaia colours and
hotometry rank quite highly. Ho we ver, despite this high dependence
n Gaia photometry and colours, the proper motions in RA and
EC do not rank nearly as high, at ranks 85 (0.0027 ± 0.0002)

nd 67 (0.0036 ± 0.0004) for proper motion in RA for the SMC
nd LMC, respectively, and at ranks 48 (0.0046 ± 0.0004) and 110
0.0017 ± 0.0001) for proper motion in DEC for the SMC and LMC,
espectiv ely. This is une xpected since proper motions would be the
ost obvious way of separating the high proper-motion stars and

xtragalactic sources from the Magellanic stellar sources. This could
e due to the Clouds lying at the very limits of the usability of the Gaia
ata (e.g. Vasiliev 2018 ; Gaia Collaboration 2021b ) making proper
otions have significant uncertainties at the distances of the Clouds,

specially for the fainter sources ( G > 18 mag). It should be noted
hat an increased uncertainty in a feature tends to lead to a decrease
n class probability, especially for the more important features. 

The worst features are most likely due to an abundance of missing
alues for these features, brought upon by either a lack of co v erage
n certain areas and/or a lack of depth, such as for colours based on
MASH and AllWISE photometry (e.g. any SMASH photometry
any AllWISE photometry), which are the least important features

or both classifiers. Leaving these features in should not affect the
ccuracy of the classifiers as they have been deemed unimportant,
nd therefore unlikely to be relied upon to make a classification. 

 RESULTS  

he full VMC data set for the SMC and LMC consists of 29 514 739
nd 103 172 194 sources, respectively, where, of the sources not
lassed as Unknown, ∼9 per cent (SMC) and ∼6 per cent (LMC) are
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Table 3. Distribution of the classifications of sources in the SMC and LMC 

fields for all sources, sources with P class > 60 per cent and < 80 per cent and 
sources with P class > 80 per cent. 

Class All 
60 per cent < P class < 

80 per cent 
P class > 80 

per cent 

SMC 29 514 739 4012 812 10 478 568 
SMC (Known) 7953 558 350 287 707 939 

AGN 680 721 112 070 7902 
Galaxy 67 522 17 158 3167 
OB 4735 098 5006 8739 
RGB 1119 492 203 795 682 502 
PNe 1112 906 442 48 
Post-AGB/RGB 29 385 2907 89 
AGB 137 618 703 2382 
H II /YSO 38 365 324 89 
PM 30 777 7676 2777 
RSG 1674 206 244 
Unknown 21 561 181 3662 525 9770 629 

LMC 103 172 194 7176 530 46 218 151 
LMC (Known) 30 889 945 580 880 397 899 

AGN 1593 270 403 382 42 605 
Galaxy 230 515 49 503 23 979 
OB 336 1 81 27 303 64 178 
RGB 628 388 61 794 237 841 
PNe 44 118 545 77 
Post-AGB/RGB 4411 20 33 
AGB 25 376 797 5218 15 892 
H II /YSO 214 791 19 601 3268 
PM 2455 355 12 721 8898 
RSG 6119 793 1128 
Unknown 72 282 249 6595 650 45 820 252 
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lassed as extragalactic. Table 3 shows the distribution of classes for
he entire SMC and LMC fields, as well as for sources with class
robabilities ( P class ) > 60 per cent and > 80 per cent. This shows that
he majority of sources (that are not classed as Unknown) in the
MC and LMC fields are classified as stars, as expected. OB and
GB stars have the highest number, which could be caused by other

tellar sources that were not trained upon being classed as these 
lasses, such as bluer stars for the OB class and redder stars for the
GB class. The majority of extragalactic sources are expected to 
e galaxies not hosting an AGN, ho we ver, galaxy counts tend to be
ower than AGN. This could be explained by the host galaxies used
o train the PRF being all low redshift sources, which could mean
he higher redshift galaxies are being predicted to be other classes.
t could also be because AGN can be detected out to higher redshifts
han galaxies as the bright AGN continuum can be seen when the
ainter continuum of a galaxy cannot, therefore we can find more 
GN. High- z galaxies could potentially be classed as RGB stars if

he galaxy is particularly red and dusty, but could also be classified
s Unknown, which is where most of the fainter sources are expected
o end up due to lack of faint sources in the training set. 

For the known (sources not classed as Unknown) sources with 
 class > 80 per cent in Table 3 , it can be seen that the SMC sources
utnumber the LMC sources. This can be attributed to the RGB class,
s most of the classes are larger in number in the LMC, except the
GB, which is less than half the SMC RGB number. This may be due

o the training set, as the SMC RGB training set had fainter examples
f RGB than the LMC training set. Therefore, these fainter RGBs
re not being picked up by the LMC classifier, and the number of the
GBs is less for the LMC. 
A layout of the results table for the classification of all the
ources can be seen in the online Appendices in Table C1. The
atalogues of sources are separated into high-confidence sources 
 P class > 80 per cent), mid-confidence sources (60 per cent < P class <

0 per cent) and low-confidence sources ( P class < 60 per cent). Some
ow/mid-confidence AGNs have the possibility of being moved up 
o the high-confidence catalogue if they are found to be associated
ith an X-ray and/or radio detection (see Sections 5.4 and 5.5 ), or if

he combined AGN and galaxy probabilities put them into a higher
hreshold (see Section 4.2 ). 

For the rest of this work, unless stated otherwise, we will
e referring to the high-confidence sources when exploring their 
istributions and properties. 

.1 PRF classification spatial distributions across the SMC and 

MC fields 

he spatial distributions of each of the classes across the SMC and
MC fields can be seen in Figs 5 –8 . Note that the most confident
lass predictions tend to be in the areas where all the photometric
urv e ys o v erlap (see Fig. 1 for comparison), and therefore the PRF
ad access to the most complete data set to classify with. 

The spatial distributions of the extragalactic sources are expected 
o be homogeneous when not looking through a nearby galaxy. In the
resence of the SMC and LMC, the spatial distribution is expected 
o be mostly homogeneous, but highest away from the centres of
he SMC and LMC, and decrease as the stellar density increases
owards the centres of the SMC and LMC, as stellar sources are

ore likely to be in the way of the background extragalactic sources
nd extinction becomes more prominent. The spatial distribution 
f the sources classed as AGN and galaxies, seen in Fig. 5 , is
s expected, the number of sources slightly decreases towards the 
entres of the Magellanic Clouds. The highest density areas are 
here there is o v erlap between SMASH and VMC data sets (see
ig. 1 ), the combination of which would therefore allow for more
onfident classifications. 

The spatial distribution of the foreground Milky Way stars can be
een in Fig. 6 . This is expected to be homogeneous across the sky
nd this is the spatial distribution that we see. 

The spatial distribution of the combined Magellanic stellar 
ources can be seen in Fig. 7 . The spatial distribution for the LMC
s as expected with the Magellanic sources concentrating in the 
entre. The spatial distribution of sources for the SMC is not as
xpected. Though the numbers do become fewer towards the edge 
f the surv e y re gion, the sources e xtend to the edges of the VMC
urv e y area where extragalactic sources are expected to dominate.
he majority of the sources causing this unexpected behaviour are 
lassified as RGB stars. 

After removing the dominating RGB class, we see the spatial 
istribution in Fig. 8 , in which the sources concentrate in the centre of
he Magellanic Clouds as expected. We can see the stellar structures
f the Magellanic Clouds. The SMC is known to have a bar structure
ith an extension towards the East, which is what we are seeing here.
e can also see the bar structure of the LMC (El Youssoufi et al.

019 ) clearer after removing the RGBs. Since RGBs tend to be older,
his could suggest that the bars are not an old structure. 

The spatial distribution maps of the individual classes (except PM 

tars) can be seen in online Appendix Section D. 
The spatial distribution of galaxies is mostly homogeneous as 

xpected, with a decrease to the highest stellar densities in the
entres of the two Magellanic Clouds, which is a more obvious
ffect for the LMC catalogue. AGNs, on the other hand, are mostly
omogeneous across the entire surv e y footprint, with no decrease
MNRAS 537, 1028–1055 (2025) 
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M

Figure 5. The sky density of the combined AGN and galaxy sources with P class > 80 per cent for the LMC (left) and SMC (right). The density of sources 
identified as extragalactic is fairly uniform over the survey areas, with a slight increase away from the centres of the Magellanic Clouds (as expected due to 
extinction and source confusion) and with some visible structure due to the differing footprints of some of the data sets that enable robust identification of 
extragalactic sources. 

Figure 6. The sky density of the foreground high proper-motion (PM) sources with P class > 80 per cent for the LMC (left) and SMC (right). The density of 
sources identified as foreground stars is fairly uniform over the survey areas, as expected. 
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Figure 7. The sky density of the combined stellar Magellanic sources with P class > 80 per cent for the LMC (left) and SMC (right). The distribution is 
dominated by intermediate-age/old RGB stars. 

Figure 8. The sky density of the combined stellar Magellanic sources with RGB sources remo v ed and P class > 80 per cent for the LMC (left) and SMC 

(right).The sources identified as Magellanic concentrate in the centres of the Clouds with fewer sources on the outskirts of the surv e y area. The sources 
concentrate more in the bar structure of the Clouds and the distribution is dominated by young stars. 
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owards the galactic centres. The lack of decrease towards the centres 
f the Clouds for the AGN spatial distribution could be due to
righter AGNs being easier to see through the Clouds than the fainter
ackground galaxies. 
The two most noticeable globular clusters, 47 Tucanæ and NGC 

62, sho w noticeably fe wer sources with probability > 80 per cent.
his is most likely because no sources from these clusters, which are
loser to us than the SMC, were used in training. They can be traced
MNRAS 537, 1028–1055 (2025) 
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ainly by the spatial distributions of RGB, Unknown and PM stars,
s expected. 

Overall, the different classes are distributed across the VMC fields
f the LMC and SMC mostly as expected. 

.2 AGN and galaxy classifications 

ome sources have a combined AGN and Galaxy probability that
akes them a high confidence extragalactic source, if not necessarily
 high confidence AGN or Galaxy. These sources tend to be obviously
xtended in VISTA images, proving their most likely extragalactic
ature. 
For this reason sources with a combination of AGN and Galaxy

robabilities ≥80 per cent (56 134 and 140 212 for the SMC and
MC, respectively) are moved to the high confidence catalogue,
nd those that have ≥ 60 per cent and < 80 per cent (126 514 and
02 530 for the SMC and LMC, respectively) are moved to the mid-
onfidence catalogue. 

 DISCUSSION  

.1 Classification of unusual dust-dominated AGN 

s part of the work done in Pennock et al. ( 2022 ), unusual AGN
hat appeared to showcase dust emission almost entirely from the
GN, that are often misidentified as stellar objects, were found using
nsupervised machine learning and spectroscopically observed. This
 ork w as then continued into the LMC. Some of these sources were
sed in training. The PRF classifications that we obtain here for the
ull sample of candidate dust-dominated AGN from Pennock et al.
 2022 ) and the extended sample in the LMC field can be seen in
able 4 . 
For the SMC sources, most are confident AGN, except the two

nown stars. SMCtSNE5 is confidently classed as an A GB star ,
hich is not unexpected as it is a carbon star. SMCtSNE8, which

s a long-period variable AGB star with a H α emission line from
hock dissipation, is classed as a low confidence AGN ( ∼54 per cent
robability) with a ∼15 per cent probability of being a pAGB/RGB
nd ∼12 per cent probability of being an AGB, as the next highest
ossibilities. 
For the LMC sources, 15 sources are classed as AGN with varying

onfidences. LMCtSNE14 (AGN, z ∼ 0.4) is classed as a galaxy
ith a ∼ 30 per cent chance of being an AGN, which, considering

ts visible host galaxy in VMC images, is not that surprising. We
nd that, although not predicted confidently as AGN, dusty AGB
tars and YSOs are the main contaminants of AGN-dust dominated
amples. 

This shows that unusual dust-dominated AGN that have often been
istaken for dusty Magellanic objects are being classified correctly

y the PRF, most likely helped by the inclusion of similar sources
n the training set. This does, ho we ver, sho w that emission line stars
ave a chance of being classed as AGN, though with possibly low
robabilities. 

.2 Unseen stellar classes 

ne way to ascertain the performance of the classifier in separating
xtragalactic from stellar sources is to test it on classes it has not seen
efore. The classifications from SAGE-spec (Ruffle et al. 2015 ; Jones
t al. 2017 ) were used as part of the training set for the classifier.
ot all the classes in this data set were added to the training set as

hey were deemed too few in number for training purposes and/or
NRAS 537, 1028–1055 (2025) 
ot a well-defined class (e.g. emission-line stars). The SAGE-spec
ata sets for the SMC and LMC has 18 and 47 sources, respectively,
hat were not used. The predicted probabilities and classes of these
8 sources were extracted from the full SMC and LMC data sets and
an be seen in Tables 5 and 6 , respectively. 

Overall, for the SMC classifier, all of the sources were classed as
tellar sources. All the sources are predicted to have a < 10 per cent
robability of being an AGN and < 5 per cent probability of being
 galaxy. This implies that similar stellar sources of these natures
 ould most lik ely not be predicted to be extragalactic. RCrB are
ften associated with post-AGB stars so it is not surprising that two
ut of three were classed as AGB stars. WR can be similar to O type
tars so would be expected to be predicted as an OB star, which all
ut one are. The WR star predicted as an RGB star could possibly be
 case of a dusty WR star. 

For the LMC classifier, two sources were classified as UNK in the
AGE-spec catalogue, but were classed by the PRF as AGN. The
est of the sources were predicted to be one of the stellar classes. Just
s for the SMC, the RCrB were mostly classed as AGB, WR were
ostly predicted to be OB stars and the one BSG was predicted to be

n OB star. The two SNRs were predicted to be H II /YSOs, the two
BVs were predicted as PM stars, the seven R VT au were predicted
s post-A GB/RGB and A GB stars and the YSG was predicted as
n RSG. These are all unsurprising as these stellar objects share
roperties with the stellar classes they have been classed as. 
These results are promising for AGN and galaxy classifications,

s this shows that Magellanic classes that have not been trained upon
re classified as one of the other Magellanic classes. 

.3 Colour–magnitude selections of PRF classified sources 

n this section, we explore the class distributions across colour–
olour and colour–magnitude diagrams in the optical, near-IR, and
id-IR. Here, we focus on the sources with P class > 80 per cent. 

.3.1 Optical 

rom the optical colour–magnitude diagram seen in Fig. 9 , we can see
n the Unknown sources the structure of stellar sequences (Nidever
t al. 2017 ). The main sequence stars are expected to start from the
ottom of the diagram and fork to the left, which is what we see in
he Unknowns. It is not surprising that main sequence stars would
e picked up as Unknowns as they were not a class that was trained
n. The right fork of the Unknowns is expected to be supergiants
nd RGB stars. The sources classed as RGB stars and RSG stars do
ollow this fork, so it is likely that not all the RGB and RSG stars
ere classified, possibly due to mismatches between the different
hotometry and/or missing data. AGN can be mostly found in the
iddle of the expected stellar sequence, meaning they would be hard

o classify in just optical alone. Galaxies tend to concentrate just to
he right of the stellar sequences, and it is possible the Unknowns
n this region are also galaxies that were not accounted for in the
raining set. 

.3.2 Near-IR 

he near-IR VISTA colour–magnitude diagram ( J − K s versus K s )
an be seen in Fig. 10 . Most sources that have J − K s > 1 mag and
 s > 12 mag are expected to be background galaxies and quasars

see region L in Cioni et al. 2014 , 2016 ), and from Fig. 10 (right
anel) we see that the AGN and galaxy populations follow this.
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Table 4. Classifications of sources from Pennock et al. ( 2022 ) and Pennock et al. (in preparation) that were candidate 
AGN with little to no dust from the host galaxy and that also had a tendency to be misclassified as dusty stellar sources in 
the Magellanic Clouds. C star refers to carbon stars and Em ∗ refers to emission-line stars. Note that some of these sources 
were used in the training set, indicated by the ‘T?’ column, by either ‘Y’ (yes) or ‘N’ (no). 

Name RA DEC PRF Class P class T ? Spec. Class 

SMCtSNE1 00:36:16.99 −74:31:31.3 AGN 0.99 Y AGN 

SMCtSNE2 01:13:37.08 −74:27:55.3 AGN 0.97 Y AGN 

SMCtSNE3 00:31:56.89 −73:31:13.6 AGN 0.96 Y AGN 

SMCtSNE4 00:26:02.54 −72:47:18.0 AGN 0.98 Y AGN 

SMCtSNE5 00:48:25.70 −72:44:03.0 AGB 0.99 Y C star 
SMCtSNE6 01:14:08.00 −72:32:43.3 AGN 0.98 Y AGN 

SMCtSNE7 00:55:51.51 −73:31:10.0 AGN 0.97 Y AGN 

SMCtSNE8 01:22:36.90 −73:10:16.7 AGN 0.45 N Em ∗
SMCtSNE9 01:21:08.40 −73:07:13.1 AGN 0.99 Y AGN 

SMCtSNE10 01:15:34.09 −72:50:49.3 AGN 0.94 Y AGN 

SMCtSNE11 00:39:10.78 −71:34:09.9 AGN 0.98 Y AGN 

SMCtSNE12 00:51:16.95 −72:16:51.5 AGN 0.98 Y AGN 

SMCtSNE13 00:57:32.80 −72:13:02.0 AGN 0.99 Y AGN 

SMCtSNE15 00:34:05.30 −70:25:52.3 AGN 0.82 Y AGN 

SMCtSNE16 00:49:52.50 −69:29:56.0 AGN 0.34 Y AGN 

LMCtSNE2 06:15:04.01 −66:17:16.4 AGN 0.69 Y AGN 

LMCtSNE3 05:33:57.69 −64:20:24.9 AGN 0.87 Y Galaxy 
LMCtSNE4 05:01:10.84 −73:36:35.0 AGN 0.92 Y AGN 

LMCtSNE5 05:41:12.99 −64:11:53.7 AGN 0.69 N ? 
LMCtSNE6 05:45:05.73 −64:11:19.3 AGN 0.60 N AGN 

LMCtSNE7 05:20:19.84 −73:55:37.3 AGN 0.31 N AGN 

LMCtSNE8 05:32:10.38 −73:57:22.3 AGN 0.36 N AGN 

LMCtSNE9 04:38:50.67 −72:17:12.6 AGN 0.50 N AGN 

LMCtSNE10 05:14:17.90 −72:20:19.2 AGN 0.56 Y AGN 

LMCtSNE11 04:51:38.41 −71:02:06.1 AGN 0.95 Y AGN 

LMCtSNE12 05:40:55.08 −70:34:46.9 OB 0.84 N Em ∗
LMCtSNE13 05:22:52.28 −69:50:42.6 H II /YSO 0.21 N Em ∗
LMCtSNE14 05:51:43.28 −68:45:43.0 Galaxy 0.58 Y AGN 

LMCtSNE15 05:22:30.52 −67:54:43.6 OB 0.71 N Em ∗
LMCtSNE16 05:31:48.96 −67:21:33.8 H II /YSO 0.41 N Star 
LMCtSNE17 05:31:54.44 −68:26:40.4 H II /YSO 0.99 Y Em ∗
LMCtSNE18 05:48:22.29 −67:58:53.3 AGB 0.44 N Em ∗
LMCtSNE19 05:04:47.16 −66:40:30.7 H II /YSO 0.69 N Em ∗
LMCtSNE20 05:53:57.48 −66:50:01.6 AGN 0.90 N AGN 

LMCtSNE21 06:10:52.23 −66:30:11.5 AGN 0.62 N AGN 

LMCtSNE22 05:19:42.45 −65:02:16.8 AGN 0.88 Y AGN 

LMCtSNE23 05:49:13.47 −64:29:29.2 AGN 0.60 N AGN 

LMCtSNE24 05:43:34.33 −64:22:58.2 AGN 0.83 N AGN 
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ioni et al. ( 2014 ) also states that a minority of RGB stars could also
e scattered to this region due to larger e xtinctions. F ainter Unknown
ources in this region are most likely extragalactic sources at higher 
edshift than in the training set. 

The stellar classes in Fig. 10 mostly a v oid the extragalactic classes.
he ones that do not, YSOs, PNe, post-A GB/RGB and A GB stars,
re most likely reddened due to dust. The RGB stars that are K s > 16
re in the region expected for RGB stars, and the RGB stars brighter
han this are in the area for dusty AGB stars. 

.3.3 Mid-IR 

he distributions of extragalactic and stellar sources are plotted in 
llWISE colour–colour diagrams (for expected distributions see, 

.g. Stern et al. 2012 ; Assef et al. 2013 ; Nikutta et al. 2014 ). The
xtragalactic sources can be seen in Fig. 11 (right panel) where both
GN and galaxies occupy e xpected re gions in colour–colour space. 
he galaxy class occupies the region expected for both star-forming 
nd elliptical galaxies, whilst AGN occupy the region of QSOs and
e yferts. The fore ground stars (PM) are also plotted here and are
icely centred on (0,0) in Vega colours, as expected. The ‘Unknown’,
ources are shown to o v erlap with several of the classes, but spread
urther to the bottom right than the other classes. Note that this is
here the WISE sources with low signal to noise (S/N < 3) tend to

nd up. 
The distributions of the stellar Magellanic sources across the 

llWISE colour–colour diagram can be seen in Fig. 11 (left panel).
he AGB sequence can be clearly seen. The populations of RGB,
B, and RSG stars tend to concentrate below W 1 −W 2 ∼ 0, unlike

he extragalactic sources which tend to concentrate above W 1 −W 2
0. The PNe and YSO and post-AGB/RGB are the classes that

how the most cross-o v er with the extragalactic classes, which is
ot unexpected as they are known to be hard to differentiate from
xtragalactic sources in colour–colour diagrams. It is noted that 
ources below W 1 −W 2 ∼ −1 mag are mostly found within the higher
ensity regions (centre of the SMC). This could be due to WISE
MNRAS 537, 1028–1055 (2025) 
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M

Table 5. Sources from Ruffle et al. ( 2015 ) that were not used in the training of the PRF classifier. The SAGE classes are Wolf-Rayet stars 
(WR), R Coronæ Borealis variable stars (RCrB), Blue supergiants (BSG), S-type stars (S star), Symbiotic stars (Sym. star), and stars of 
indiscernible type (star). 

Source name SAGE Class RA (J2000) DEC (J2000) PRF Class P class 

SMC-WR9 WR 00:54:32.2 −72:44:36 OB 0.99 
SMC-WR12 WR 01:02:52.2 −72:06:52 OB 0.96 
GSC 09141 −05631 WR 00:43:42.2 −73:28:54 OB 0.99 
SMC-WR2 WR 00:48:31.0 −73:15:45 OB 0.99 
SMC-WR3 WR 00:49:59.3 −73:22:14 OB 0.99 
SMC-WR4 WR 00:50:43.4 −73:27:05 OB 0.98 
RMC 31 WR 01:03:25.2 −72:06:44 OB 0.80 
SMC-WR11 WR 00:52:07.5 −72:35:38 OB 0.99 
MSX SMC 014 RCrB 00:46:16.4 −74:11:13 AGB 0.74 
MSX SMC 155 RCrB 00:57:18.2 −72:42:35 AGB 0.56 
AzV 404 Star 01:06:29.4 −72:22:09 OB 0.52 
BFM 1 S star 00:47:19.3 −72:40:04 AGB 0.97 
AzV 456 Star 01:10:55.8 −72:42:57 OB 0.84 
AzV 23 Star 00:47:38.9 −73:22:54 OB 0.50 
OGLE SMC-SC10 107856 RCrB 01:04:53.0 −72:04:04 AGB 0.43 
MSX SMC 185 Sym. star 00:54:20.0 −72:29:09 PNe 0.53 
HD 5980 WR 00:59:26.7 −72:09:54 OB 0.62 
HD 6884 BSG 01:07:18.1 −72:28:04 AGB 0.41 
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hotometry being affected by blends, making the longer wavelength,
oorer angular resolution data appear brighter. 
The OB stars appear to have two populations in the AllWISE

olour–colour diagram. One population that concentrates below
 1 −W 2 ∼ 0 as expected, and a smaller one that concentrates just

bo v e this, a redder population, which also happens to be the expected
rea for galaxies. Some possibilities are that it is either the star
ighting up surrounding ISM (‘Pleiades ef fect’, e.g. Iv anov et al.
024 ; Sheets et al. 2013 ), a nascent star (B[e] star), or a mature, Be
tar with an excretion disc, in which case the red W 1–W 2 colour
s caused by free-free emission from the circumstellar ionized gas
rather than dust). Spectroscopically observed stars undergoing the
leiades effect (Sheets et al. 2013 ), as well as B[e] and Be stars
Reid & Parker 2012 ) have been plotted on the AllWISE colour–
olour diagram in Fig. 12 . From this we can see that redder sources
re most likely Be or B[e] stars, with near-IR excess most likely due
o free −free emission. 

Overall, the colour–colour and colour–magnitude diagrams for the
ifferent wavelength regimes show that the majority of sources are
eing separated where expected and that even in areas where multiple
lasses can be found the PRF is still capable of separating the sources.
or comparisons between the distributions of the training set versus

he classed sources, see online Appendix Section E. 

.4 Classifications of the radio population 

ross-matching with the radio ASKAP SMC (Joseph et al. 2019 )
nd LMC (Pennock et al. 2021 ) catalogues with a 2 arcsec search
adius, gives 1047/7736 and 8120/54612 sources for SMC and LMC,
espectiv ely, which hav e a P class > 80 per cent. The numbers of radio
ources per class can be seen in Table 7 . A search radius of 2 arcsec
as used, as when cross-matching with a larger search radius of
 arcsec it was seen that the AGN class, the sources that are the most
ikely true counterparts, peaked at a separation radius of ∼ 1 arcsec .
oubling this to a search radius of 2 arcsec was used to include the
ajority of AGN matches whilst reducing the number of mismatches.
The majority (78 per cent for the SMC and 70 per cent for the

MC) of these sources are classed as Unknown. From the other
NRAS 537, 1028–1055 (2025) 
lasses, the class with the highest number is AGN, followed by
alaxies, as expected as such sources are often radio bright. Ho we ver,
or both the SMC and LMC, RGBs number > 50. RGBs are not
xpected to be radio sources, so this implies that there were some
isclassification, or that these RGB are not the true counterparts

o the radio sources. Due to the significant differences in resolution
etween both data sets, mismatching is not unexpected. The separa-
ion between the VMC coordinates and ASKAP coordinates for the
GB class is in general larger than AGN ( ∼ 1 . 35 arcsec for RGB
ompared to ∼ 1 arcsec for AGN), which implies that these RGB
ources could be merely mismatches. 

Of the other stellar sources, H II /YSO and PNe are expected to
e associated with a radio detection, and foreground stars are close
nough that a radio detection is possible. One of the brightest and
ell known radio sources in the LMC is supernova SN 1987A,
hich matched with 2 sources in the PRF catalogue within 1 arcsec.
oth of which had a classification of H II /YSO with probability 31–
5 per cent, with the next highest class as AGN with probability
2–27 per cent. So, the classifier did not know what to class it as and
id not put it in the Unknown class, proving that it is quite a unique
ource. 

In relation to the full catalogue of sources with P class > 80 per cent,
he fraction of AGN with a radio detection is ∼1.24 per cent and

3.89 per cent and for galaxies is ∼1.58 per cent and ∼2.54 per cent,
or the SMC and LMC, respectively. The expected radio loud
opulation is about 10 per cent, but ours is limited to the likeliest
GN, i.e. those that are well sampled in the training data, so its
ossible that the missing fraction is in the lower confident AGN
opulation and/or the Unknown class. 
It has been seen that there is an upturn in the number of sources

ow ards f ainter flux densities, representing the beginning of the faint
alaxy population, as well as the radio quiet AGN population (e.g.
ennock et al. 2021 ). Therefore, it is expected that the number of
adio detected galaxies will have increased towards the fainter fluxes.
ooking at the radio flux density distribution at 888 MHz (LMC) and
320 MHz (SMC), and the ratio of galaxy to AGN counts in Fig.
3 , it can be seen at the brightest fluxes, there are less galaxies
ompared to AGN, as expected, and to wards lo wer flux densities the
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Table 6. Sources from Jones et al. ( 2017 ) that were not used in the training of the PRF classifier. The SAGE classes are Wolf- 
Rayet stars (WR), R Coronæ Borealis variable stars (RCrB), Blue supergiants (BSG), Yellow supergiants (YSG), S-type stars (S 
star), Symbiotic stars (Sym. star), R V T auri stars (R VT au), SNR, unknown (UNK), luminous blue variable stars (LBV), and stars 
of indiscernible type (star). 

Source name SAGE class RA (J2000) DEC. (J2000) PRF class P class 

LHA 120-N 82 WR 04:53:30.30 −69:17:49.2 H II /YSO 0.39 
HD 268 813 STAR 04:54:23.23 −70:26:56.8 RSG 0.39 
RP 1631 RCrB 05:00:35.35 −70:52:00.5 AGB 0.60 
HV 2281 R VT au 05:03:05.05 −68:40:25.0 pA/RGB 0.82 
LMC-BM 11–19 STAR 05:03:43.43 −67:59:19.0 AGB 0.86 
RP 1878 UNK 05:04:34.34 −67:52:21.4 AGN 0.39 

BSG 05:06:39.39 −68:22:09.5 OB 0.99 
HV 915 R VT au 05:14:18.18 −69:12:35.3 pA/RGB 0.41 

STAR 05:15:26.26 −67:51:27.0 AGB 0.99 
KDM 3196 STAR 05:18:08.08 −71:51:53.6 AGB 0.65 
HV 2444 R VT au 05:18:45.45 −69:03:22.0 AGB 0.58 

STAR 05:19:45.45 −69:30:00.0 AGB 0.88 
HV 942 RCrB 05:21:48.48 −70:09:57.2 AGB 0.46 
HV 5829 R VT au 05:25:19.19 −70:54:10.1 AGB 0.56 
MACHO 82.8405.15 R VT au 05:31:51.51 −69:11:46.3 pA/RGB 0.57 

STAR 05:32:07.07 −70:10:25.0 AGB 0.94 
SHP LMC 256 UNK 05:34:44.44 −67:37:50.5 AGN 0.78 
KDM 5345 UNK 05:38:24.24 −66:09:00.4 AGB 0.99 
MACHO 81.9728.14 R VT au 05:40:01.01 −69:42:14.8 OB 0.31 

UNK 05:45:46.46 −67:32:39.1 AGB 0.40 
KDM 6247 STAR 05:47:57.57 −68:14:57.1 AGB 0.91 
HV 2862 R VT au 05:51:23.23 −69:53:51.4 pA/RGB 0.84 
PMP 133 STAR 05:52:53.53 −69:30:35.3 PM 0.96 
HD 270 754 STAR 04:47:05.05 −67:06:53.3 OB 0.97 
HD 32 402 WR 04:57:24.24 −68:23:56.8 OB 0.87 
HD 269 187 STAR 05:14:04.04 −67:15:50.8 PM 0.78 
S Dor LBV 05:18:14.14 −69:15:01.4 PM 0.35 
OGLE LMC-RCB-10 RCrB 05:20:48.48 −70:12:13.0 AGB 0.91 
HD 36 402 WR 05:26:04.04 −67:29:57.1 OB 0.72 
W Men RCrB 05:26:25.25 −71:11:11.8 AGB 0.40 
HD 269 662 LBV 05:30:52.52 −69:02:58.9 PM 0.53 
HV 12 620 STAR 05:33:00.00 −70:41:23.6 AGB 0.82 
HV 2671 RCrB 05:33:49.49 −70:13:23.5 H II /YSO 0.40 
SN 1987A SNR 05:35:28.28 −69:16:11.3 H II /YSO 0.36 
W61 27–27 STAR 05:36:04.04 −69:01:30.4 OB 0.91 

WR 05:36:44.44 −69:29:46.0 OB 0.98 
SNR B0540-69.3 SNR 05:40:11.11 −69:19:54.5 H II /YSO 0.76 
HD 269 953 YSG 05:40:12.12 −69:40:04.8 RSG 0.39 
IRAS 05413–6934 UNK 05:40:54.54 −69:33:18.7 H II /YSO 0.99 
MSX LMC 1795 RCrB 05:42:22.22 −69:02:59.6 AGB 0.90 
LHA 120-S 61 WR 05:45:52.52 −67:14:25.8 OB 0.80 
HD 270 422 STAR 05:56:48.48 −66:39:05.0 RSG 0.35 
HD 270 467 STAR 05:58:12.12 −66:20:23.6 PM 0.81 
WOH G 642 STAR 05:59:21.21 −66:31:56.6 PM 0.99 
HD 41 466 STAR 06:00:19.19 −66:13:27.5 PM 0.34 
HD 270 485 STAR 06:00:53.53 −66:55:48.0 PM 0.99 
HD 271 776 STAR 06:01:38.38 −66:35:20.0 PM 0.92 
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umber of galaxies compared to AGN increases, also as expected. 
o we ver, at about F 888MHz , F 1320MHz < 7 mJy, the number of galaxies

ompared to AGN starts decreasing towards lower flux densities, 
hich is unexpected, as at lower flux densities we would expect 

n increase in faint galaxies, but it could be that the faint AGN
opulation is easier to classify than the faint galaxy population. 
he trend is less clear for the SMC where source statistics are
oorer. 
It should be noted that the AGN and galaxies being compared 

ere only represent the more confident classifications of the PRF, a 
raction of the true number in this field that will have been detected
ith ASKAP. More AGN than galaxies are also found, most likely
ue to them being easier to detect at higher redshifts, which could
ccount for the increase towards lower radio flux densities, as we
re identifying the radio quiet AGN, but not the fainter star-forming
alaxies. It should also be noted that a source classed as a galaxy with
 radio association could indicate AGN activity that is not visible at
ther wavelengths. 
The 1320 MHz band was used o v er the 960 MHz for the SMC,

s the observation at 960 MHz did not use the full ASKAP array,
ut the 1320 MHz observation did, and would therefore have similar
epths to the LMC 888 MHz observation. 
MNRAS 537, 1028–1055 (2025) 
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Figure 9. SMASH colour–magnitude diagrams of the sources classified as Magellanic sources (left), foreground stars and extragalactic (right) in the SMC and 
LMC fields. The contours represent a probability distribution in intervals of 0.2. The sources identified as Unknown with P class > 80 per cent are represented 
as a 2D histogram in the background of both plots. 

Figure 10. VISTA colour–magnitude diagrams of the sources classified as Magellanic sources (left), foreground stars and extragalactic (right) in the SMC and 
LMC fields. The contours represent a probability distribution in intervals of 0.2. The sources identified as Unknown with P class > 80 per cent are represented 
as a 2D histogram in the background of both plots. 
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Figure 11. AllWISE colour–colour diagrams of the sources classified as Magellanic sources (left), foreground stars and extragalactic (right) in the SMC and 
LMC fields. The contours represent a probability distribution in intervals of 0.2. The sources identified as Unknown with P class > 80 per cent are represented 
as a 2D histogram in the background of both plots. 

Figure 12. AllWISE colour–colour diagram of the sources classified as OB 

stars (blue contours). The contours represent a probability distribution in 
intervals of 0.2. Overplotted are stars that exhibit the Pleiades effect (red 
circles), Be stars (green circles) and B[e] stars (orange circles). 
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Table 7. The number of sources per class that were cross-matched with 
ASKAP within a 2 arcsec search radius. 

Class All 
60 per cent 

< P class < 80 per cent 
P class > 80 

per cent 

SMC 4469 965 1047 
Unk 2208 544 813 
AGN 790 192 98 
Galaxy 431 189 50 
RGB 153 33 76 
OB 540 1 4 
H II /YSO 36 4 1 
AGB 18 0 3 
PNe 285 1 2 
RSG 0 0 0 
Post- 
AGB/RGB 

5 1 0 

PM 3 0 0 

LMC 37 375 6450 8120 

Unk 15 752 2002 5660 
AGN 10 399 3012 1658 
Galaxy 4224 1361 609 
RGB 197 25 57 
OB 1324 16 63 
H II /YSO 206 23 28 
AGB 3880 1 1 
PNe 292 7 38 
RSG 1 1 0 
Post- 
AGB/RGB 

6 0 2 

PM 1154 2 4 
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.5 Classifications of the X-ray population 

ross-matching with the XMM −Newton catalogues for the SMC 

Sturm et al. 2013 ) and all-sky (Webb et al. 2020 ) catalogues at
 cross-matching radius less than the positional error in the X-ray 
oordinates for each source yields a total of 627 and 4794 X-ray
ources with reliable PRF classifications ( P class > 80 per cent) for
MNRAS 537, 1028–1055 (2025) 
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Figure 13. Radio LMC ASKAP 888 MHz (left) and SMC ASKAP 1320 MHz (right) flux density distributions and the ratio of galaxy to AGN counts (bottom 

panels) of the predicted AGN and galaxy sources with P class > 80 per cent. A galaxy-AGN subset has also been included where the individual AGN and galaxy 
probabilities are < 80 per cent, but the combined probabilities are > 80 per cent. 
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Table 8. The number of sources per class that were cross-matched with 
XMM −Newton within the positional error of each source’s coordinates. 

Class All 
60 per cent 

< P class < 80 per cent 
P class > 80 per 

cent 

SMC 1607 381 627 
Unk 823 235 411 
AGN 364 109 118 
Galaxy 25 6 4 
RGB 103 23 39 
OB 173 3 36 
H II /YSO 9 0 0 
AGB 17 0 1 
PNe 44 0 1 
RSG 12 1 1 
Post-RGB/AGB 4 2 0 
PM 33 2 16 

LMC 10 139 1499 4794 
Unk 7157 1066 4127 
AGN 1277 324 436 
Galaxy 84 17 7 
RGB 192 30 105 
OB 278 11 65 
H II /YSO 213 21 4 
AGB 727 4 7 
PNe 14 0 0 
RSG 13 0 2 
Post-RGB/AGB 0 0 0 
PM 184 26 41 
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he SMC and LMC, respectively. The number of sources per class
an be seen in Table 8 . Most of the sources are Unknown. Of the
ther classifications, the highest count is AGN, as expected. 
From the cross-matching it can be found that for sources with

 class > 80 per cent, ∼1.49 per cent, and ∼1.02 per cent of all AGNs
re X-ray detected, for the SMC and LMC, respecti vely. Ho we ver,
he XMM–Newton surveys of the SMC and LMC do not cover the
ull VMC surv e y areas, and concentrate mainly in the centres of the
louds, so the true percentages are most likely much higher. 
In Fig. 14 , we plot the unWISE W 1 and SMASH g -band magni-

udes as a function of X-ray flux for Magellanic (left) and extragalac-
ic and foreground stars (right). In these plots, the extragalactic and
tellar sources tend to separate. The extragalactic tend to concentrate
t the fainter optical/IR magnitudes for a given X-ray flux (e.g.
ornschemeier et al. 2001 ; Ci v ano et al. 2015 ; Nandra et al. 2015 ;
alvato et al. 2018 ). 
Sources classified as Unknown which have X-ray detections are
ainly concentrated on the extragalactic side of the plots. This side

f the plots is mainly occupied by AGN, so a tentative AGN label
an be assigned to these Unknowns. These sources tend to be the
ainter sources, where there are fewer spectroscopic observations for
he classifier to learn from. When plotted on an AllWISE colour–
olour diagram, such as the one seen in Fig. 11 , the Unknown sources
 P class > 80 per cent) that are bright enough to be detected in the W 3
and (12 sources) tend to concentrate where galaxies are expected,
ith a few falling into the region where the AGN area o v erlaps the
alaxy area. It is possible that these are obscured AGNs, which the
raining set for AGNs would have been biased against. Ultraluminous
NRAS 537, 1028–1055 (2025) 
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Figure 14. X-ray flux versus unWISE W 1 (top) and SMASH g (bottom) bands for the Magellanic (left) and extragalactic and foreground sources (right). The 
high confidence ( P class > 80 per cent) Unknowns are plotted in the background of all plots. Contours and filled circles refer to sources with P class > 80 per cent, 
whilst crosses refer to sources with P class < 80 per cent. The contours represent a probability distribution in intervals of 0.2. 
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nfrared galaxies (ULIRGs) tend to be found in the lower right corner
here AGNs and galaxies o v erlap, which supports that these sources

re more obscured. 
The X-ray catalogue for the SMC from Sturm et al. ( 2013 ) also

rovides classifications within their catalogue. PRF classed OB stars 
hat have cross-matches within the SMC X-ray catalogue indicate 
hat sources classed as OB by the PRF are a mix of foreground stars
nd high-mass X-ray binaries (HMXB), which appear to separate in 
he unWISE W 1 band, with foreground stars tending to be brighter,
nd HMXBs fainter and closer to extragalactic magnitudes. The OB 

tars that are classed as HMXB in Sturm et al. ( 2013 ), amongst
hich is SMC X-1, are grouped with the other stellar sources in
ptical, ho we ver. This could indicate that X-ray sources that are
rouped with the extragalactic at IR magnitudes but grouped with 
he stellar sources at optical magnitudes could be given a tentative 
MXB classification. 
Furthermore, 53 out of 54 HMXBs found in the LMC (Maitra

t al. 2019 , 2021a , b ; Haberl et al. 2022 , 2023 ) were also classified
s OB by the PRF. These inlcude the well-known LMC X-1 and
MC X-4 with P OB > 96 per cent. Of these sources, those with the
owest probabilities ( < 70 per cent) for being an OB star were found
o have a 10–20 per cent probability of being a YSO or PNe (LMC X-
, 4XMM J052546.5-694451 and 4XMM J052417.1 −692533). Of 
hese three sources, LMC X-3 is atypical as it is a Roche Lobe
lling Black hole binary in the LMC with a B3V/B5V companion
e.g. Cowley et al. 1983 ; Soria et al. 2001 ). 4XMM J052546.5-
94451 and 4XMM J052417.1 −692533 are questionable HMXB 

andidates due to lack of expected H α emission from a decretion
isc (van Jaarsveld et al. 2018 ), which makes their lower confidence
lassifications not unexpected. The source that could not be classified, 
X J0512.6 −6717, was a ROSAT selected candidate and had a large
osition error circle of 7 arcsec, within which the Gaia counterpart
ould not be identified. Ho we ver, cross-matching with the PRF
atalogue with a matching radius 7 arcsec gave 11 sources, one
f which (at 78.17215, −67.28993) was classed as an OB star at
 Class ∼ 88 per cent. If confirmed to be the true counterpart, this
hows the PRF has the potential to match X-ray detections to their
ptical/near-IR counterparts. 
MNRAS 537, 1028–1055 (2025) 
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The true identity of the sources classed as RGB stars remains in
ontention. RGB stars should not have observable X-ray emission
t Magellanic distances, so their inclusion in the X-ray–detected
ources is questionable. As with the radio detected sources, it is
ossible that if the RGB class is the correct classification, then they
re not the true counterpart. In Fig. 14 , the RGB-classified sources
re concentrated between the stellar and extragalactic, which also
appens to be the location of some of the few galaxies with X-
ay emission. It is possible that these RGB-classified sources are
ctually red dusty star-forming galaxies. Ho we ver, when looking
t the distribution at separation between VMC and XMM–Newton
oordinates it can be seen that the AGNs have a median of 0.59
nd 0.71 arcsec for the SMC and LMC, respectively, whilst RGBs
isplay a median of 0.97 and 1.22 arcsec, which might indicate that
hese RGBs could be merely spurious alignments. 

Overall, the X-ray–detected sources are classified as expected, and
hat the sources classified as Unknown which have a corresponding
-ray detection can be a tentative extragalactic/AGN classification.
e have also shown that sources classified by the PRF with an

ssociated X-ray detection are HMXBs, and that the PRF classifier
as great potential to find the optical/near-IR counterparts to X-ray
etections. 

.6 Quaia comparison 

he Quaia surv e y (Store y-Fisher et al. 2023 ) is an all-sk y spectro-
copic quasar catalogue that used low-resolution BP/RP spectra from
aia to identify AGN candidates, and has had cuts applied based
n Gaia brightness ( G < 20.5 mag), proper motions and unWISE
olours to obtain a purer sample. Cross-matching Quaia with the
MC surv e y with a cross-matching radius of 1 arcsec yields 4325

nd 1906 sources in the LMC and SMC, respectively. This leaves
4 and 5 sources in Quaia that are inside the LMC and SMC VMC
urv e y footprints, respectiv ely, that were not matched with a source
n the VMC. It is surprising that sources that are G < 20.5 mag are
ot picked up in the deeper VMC catalogue. 
Of the sources in the VMC surv e y, 427 were in the training set. 422

f these were known AGN and two were kno wn galaxies. Ho we ver,
here was one known pAGB/RGB from the LMC, SMP LMC 11, and
ne known AGB from the SMC, OGLE SMC-SC5 255936. These
lasses are known to be variable sources, which could have played a
art in their misclassification in Quaia. 
After removing the sources in the training sets there were 4072 and

733 sources in the LMC and SMC left, respectively. The highest
raction of sources is, as expected, classed as AGN (3335/4072 and
622/1694 for the LMC and SMC, respecti vely). Fi ve sources from
he LMC footprint are classed as galaxies, with the second likeliest
lassification of an AGN, so these are most likely galaxies with an
GN component. 
There are four sources classed as AGB from the SMC and seven

rom the LMC. Seven of these have P class > 80 per cent of being an
 GB. W ith the one known A GB being classed as an A GN by Quaia, it

s possible these sources are actually AGB. The Gaia proper motions
ould not be as capable of separating the stars in the Magellanic
louds as in the Milky Way, unWISE colours ( W 1 −W 2, see Fig.
1 ) could have been in the AGN regime and the low-resolution
pectra might not hav e pro vided good enough S/N to make a good
lassification. Furthermore, AGB are known to vary regularly and
imbad contains matches for 8/11 of the AGB, and they are all
lassed as variable stars. 

There are also 18 sources classed as H II /YSOs in the Quaia
ample. Only two have mid-confidence of being this class ( P class 
NRAS 537, 1028–1055 (2025) 
f ∼ 79 per cent and 75 per cent), the rest have P class < 60 per cent.
he majority of these sources also have AGN as the next likeliest
lass. 

Five sources in the SMC were classed as RGB stars with P class <

0 per cent, with five sources with < 60 per cent. One source in the
MC was classed as an OB star but this had a P class < 60 per cent,
o is unlikely to be the true class. 

Lastly, 99 and 709 sources from the SMC and LMC, respectively,
ere classed as Unknown, suggesting that there is possibly a popula-

ion of AGN that are being missed by the classifier. The sources the
RF classed as AGN had a magnitude range of 16.3 < G < 20.5
ag, whilst the Unknown classed sources had a magnitude range of

8.8 < G < 20.5 mag. This shows that the Unknown Gaia QSOs are
ainter examples, for which there are less spectroscopically observed
ources to train the classifier upon. 

Looking at the Quaia sources that had no match in the PRF
atalogues, VISTA images revealed that at the majority of the Quaia
oordinates there are multiple sources in close proximity at the
xpected coordinates. If there is a galaxy underneath an AGN a larger
eparation is possible, as centres for galaxies are more difficult to
stablish. The majority ( > 90 per cent) of Quaia sources that matched
ith the VMC had a match within < 0.2 arcsec. We increased the

ross-matching radius to 5 arcsec and matched the Quaia sources
ith no match in the PRF catalogue again to find that all but one of the

ources had matches between 1 and 1.8 arcsec. Amongst the matches
re 15 AGN, 4 galaxies, 14 Unknown and 5 low confidence stellar
lasses. The majority of these classes being extragalactic implies that
hese are the true counterparts, though may not be as reliable due to
he distance between counterparts. 

Overall, the majority ( ∼86 per cent) of AGN found in Quaia are
ound by the classifier. This is not unexpected, as these are most
ikely the more obvious type I (broad-line) AGN, which make up the

ost of the AGN class in the training set. The type II (narrow-line)
GNs, ho we ver, are harder to test against as spectroscopic samples

end to be biased towards type I, so the sources classed as unknown
re more likely the type II AGN. 

.7 YSOs in the LMC 

SOs are dusty sources that can exhibit emission lines, making them
asily confused with AGN, therefore ascertaining that YSOs are not
eing misclassified as AGN or vice versa by the PRF is necessary.
 recent study by Kokusho et al. ( 2023 ) has compiled all the YSOs

n the area of the LMC, numbering 4097, the majority of which are
andidates located using photometry and SED fitting. The number
f H II /YSOs the PRF detects is greater in the LMC than the SMC,
nd shows signs of structure [Fig. 15 ; see also Section D (Fig. D8)
n the online Appendix for the SMC)]. 

Fig. 15 shows an expected distribution, with easily identifiable
tructures such as 30 Dor and the Southern molecular ridge below it.
11 is seen to the right and most of the Henize H II regions scattered

cross the face of the LMC. 
Cross-matching with the PRF results with a matching radius of

 arcsec yields 2715 matches, and restricting to those not in the
raining set, numbers 2274. Further restricting to only those with
 class > 80 per cent gives 630 sources. 
Of the 630 high-confidence sources, 226 are classified as
 II /YSOs and 117 are classed as Unknown, where the Unknown

ources tend to be the fainter sources. 105 and 6 are classed as AGN
nd galaxies, respectively. The rest are classified as OB (58), AGB
49), PNe (8), RGB (5), post-AGB/RGB (1), and PM (1). 



VMC: Classifying extragalactic sources with a PRF 1051 

Figure 15. The sky density distribution of the H II /YSOs with P class > 80 
per cent in the LMC. 
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Table 9. The number of Unknowns with K s < 19.8 mag (Vega) and P class > 

80 per cent that are categorized as different stellar populations based on the 
near-IR CMD selection from El Youssoufi et al. ( 2019 ), for only those sources 
with a 70 per cent probability of being stars and with photometric uncertainties 
< 0.1 mag. Note that ‘All’ represents all sources with K s > 19.8 mag. The 
table of sources with the VMC colour–magnitude classification will be made 
public with the final VMC public release. 

Region Dominant stellar 
Population 

SMC LMC 

All 875 233 13 077 735 

A Main sequence 34 032 (4 per cent) 200 596 (2 per cent) 
B Main sequence 136 738 (16 per cent) 886 994 (7 per cent) 
C Main sequence 150 780 (17 per cent) 2216 757 (17 per cent) 
D Main sequence 

and subgiants 
132 100 (15 per cent) 3063 970 (23 per cent) 

E RGB 306 060 (35 per cent) 4459 540 (34 per cent) 
F Milky Way 43 686 (5 per cent) 532 015 (4 per cent) 
G Supergiants and 

giant stars 
1 ( < 1 per cent) 0 

H Supergiants and 
giant stars 

0 ( < 1 per cent) 16 ( < 1 per cent) 

I Supergiants and 
giant stars 

21 ( < 1 per cent) 32 360 ( < 1 per cent) 

J Red clump stars 420 ( < 1 per cent) 1325 249 (10 per cent) 
K RGB 7 ( < 1 per cent) 296 100 (2 per cent) 
L Extragalactic 71 378 (8 per cent) 64 138 ( < 1 per cent) 
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About a sixth of the YSOs have been classed as an extragalactic
lass. It should, ho we ver, be noted that of the sources from this
tudy that are also in the PRF training set (441 sources), some are
pectroscopically confirmed to be other classes. 297 of them are 
onfirmed as H II /YSOs. 47 and 11 are spectroscopically confirmed 
s AGNs and galaxies, respectively. The rest are classed as AGB 

24), post-AGB/RGB (22), OB (20), PNe (18), RGB (1), and RSG
1). So, it is not unexpected that not all the sources classed as YSOs
n Kokusho et al. ( 2023 ) are classed as such here. 

.8 The unknown class 

he Unknown class represents all the sources that were not given 
 similar enough representative in the training set. The majority of
hese sources are the fainter sources that the photometry for is mostly

issing and that we have little spectroscopy for due to the limits of
round based spectroscopy instruments. There are, ho we ver, still 
righter sources amongst the Unknowns, that are made up of classes
nd/or subclasses that were not accounted for in the training sets due
o lack of available spectroscopy. 

The distribution of the Unknown class can be seen in the online
ppendix D in Fig. C10. From this it can be seen that the Unknowns

o v er the entirety of the VMC LMC field, and the area co v ered by
he SMASH surv e y for the VMC SMC field. For the SMC field this
mplies that the confident Unknown sources are those with co v erage
rom most if not all the photometric surv e ys, indicating that these
ources, specifically the brighter sources with fewer missing data, do 
ot have a match in the training set, and that they are classes that are
ot trained on, rather than not having enough information. 
Selection criteria for selecting stars of different ages using colour–
agnitude diagrams have been created for the SMC and LMC (Cioni

t al. 2014 , 2016 ; El Youssoufi et al. 2019 ) for sources down to K s >

9.8 mag and only those with a 70 per cent probability of being
tars and with photometric uncertainties < 0.1 mag. We apply the 
election criteria from El Youssoufi et al. ( 2019 ) to the confident
nknowns to provide a tentative classification and to disco v er the
ost underrepresented classes in the training set for the Magellanic 

ources. 
After applying the selection criteria to the Unknowns, 91 per cent 

nd 71 per cent of sources for the LMC and SMC, respectively, were
oo faint for the selection cut. The division of the sources that were
right enough can be seen in Table 9 . See online Appendix Section F
or a figure showing the selection criteria plotted on top of the
nknown distribution in near-IR CMD space. 
Some of the stellar populations are separated into multiple regions 

o represent different average stellar ages (for full details, see El
oussoufi et al. 2019 ). F or e xample, the main-sequence stars in region
 tend to be younger than the stars in region B. 
From Table 9 , we can see that, as expected, the main-sequence stars

populations A, B, C, and D) make up the majority of the Unknowns,
ost likely due to their lack of corresponding class in the training

ets, where only O and B main sequence stars are accounted for.
GBs (populations E and K) are the next largest population in the
nknowns, despite the majority of sources already being classified 

s RGB by the PRF, implying that we are not capturing the full scope
f the RGB star class with our training sets for the PRF, despite it
lready being the largest class. 

Population L is where extragalactic sources can be found. From 

able 9 , it can be seen that ∼135 000 sources across the Clouds can be
iven a tentative extragalactic classification. Additional information 
ould be required to further separate the sources into AGN and
alaxies. 

Another way of giving a tentative classification to sources is by
sing wavelengths that were not used in the PRF. A source being
ssociated with an X-ray or radio detection tends to imply an extra-
alactic source rather than a stellar source, as seen in Sections 5.5 and
.4 . This means we can give a tentativ e e xtragalactic classification,
hough with the caveat that cross-matching can lead to contamination 
rom spurious alignments with Magellanic or foreground stars and 
hat there are some stellar objects that do emit in the X-ray and radio,
hough they tend to be easy to pick out in the X-ray. 

To impro v e the success of this machine learning technique, more
pectroscopy is needed to bolster the training set (for both stellar
nd extragalactic populations), especially for fainter sources and 
MNRAS 537, 1028–1055 (2025) 
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hose detected in IR but not in the optical, amongst which would
e higher redshift galaxies/AGN, as well as heavily dust reddened
ources. Therefore, spectroscopy from telescopes such as the JWST
Gardner et al. 2006 ), 4MOST (de Jong et al. 2012 ), and WEAVE
Dalton et al. 2012 ) would provide greater potential in identifying the
ainter extragalactic population. The training set could potentially be
ugmented to reduce selection bias by using simulations/models, or
y taking observational data of high-redshift sources from a deep
eld surv e y, modelling the spectral energy distribution, and then
stimating what the surv e ys used in the area of the VMC would
easure in each waveband. Another method would be to take the

nown sources and model how they would look at fainter magnitudes
o regain some of the fainter sources from the Unknown class. 

In terms of features, we have selected the best current surv e y data
vailable with unique contributions. The VISTA data is deep and
s complemented by the optical SMASH data, though the SMASH
urv e y does not co v er the entirety of the VMC fields (see Fig. 1 ). The
uture Le gac y Surv e y of Space and Time (LSST; Ivezi ́c et al. 2019 )
ould be an impro v ement on the SMASH data, as it would co v er

ll of the VMC field and would reach comparable depths in its first
ata release. Furthermore, there is no current complementary mid-
R photometry that reaches the same depths. Mid-IR is a wavelength
ange that is particularly powerful in identifying AGN due to being
ensitive to the emission from the dust surrounding the accretion disc.
herefore, photometry from an IR telescope that reaches greater
epths than WISE and Spitzer would provide greater potential in
dentifying the extragalactic. 

 C O N C L U S I O N S  

n summary, we trained a probabilistic random forest on the UV–IR
hotometry of spectroscopically observed sources in the field of the
MC surv e y, augmented with AGN and galaxies from the SDSS
bservations of the GAMA09 field. This yielded o v erall accuracies
f 0.79 ± 0.01 for the SMC classifier, and 0.87 ± 0.01 for the LMC
lassifier. For the extragalactic classifications the classifiers yielded
ccuracies of 0.93 ± 0.01 for both classifiers. When restricted to
 class > 80 per cent the accuracy of the classifiers were 0.98 ± 0.01
nd 0.90 ± 0.01 for the LMC and SMC, respectively. 

The classifiers were used on the entirety of the LMC and SMC PSF
atalogues and the sources were separated into three catalogues with
ifferent ranges of probabilities of the classification being correct
low-confidence – P class < 60 per cent, mid-confidence – 60 per cent
 P class < 80 per cent, high-confidence – P class > 80 per cent). At

igh confidence, we classify a total of 707 939 and 397 899 sources
n the SMC and LMC, respectively, with a total of 50 507 AGNs
nd 27 146 galaxies ( > 49 500 and > 26 500 of which, respectively,
re new candidates) across the two Clouds. Looking at the high-
onfidence classifications, we find 

(i) The spatial distributions of the different classes across the VMC
elds of the SMC and LMC are as expected. The extragalactic and
oreground sources being mostly homogeneous across the field and
he Magellanic sources concentrating in the centres of the Clouds
ith fewer sources towards the edges of the fields. 
(ii) We tested the classifiers on stellar and extragalactic sources

hat are known to be confused with each other from Pennock
t al. ( 2022 ). The results showed that all the AGNs were classified
orrectly. We showed that even sources that are often confused with
nother class are well classified by the classifiers. Ho we ver, emission-
ine stars have the possibility of being classed as AGN, though not
ecessarily with high confidence. 
NRAS 537, 1028–1055 (2025) 
(iii) We tested the behaviour of the classifiers on classes which
he y hav e not trained upon (65 sources from the SAGE-spec cata-
ogues; Ruffle et al. 2015 ; Jones et al. 2017 ). From this, we found
hat for all stellar sources the classifiers classified them as another
tellar class. For the two sources that were classified as an AGN their
pectral classification was not known so they may have been AGN.
his means that stellar classes that we have not trained upon are
nlikely to be misclassified as extragalactic sources. 
(iv) Plotting the sources across optical, near-IR and mid-IR

olour–colour and colour–magnitude diagrams showed that the
lasses separated as expected, and that where the classes do overlap
he classifiers are still able to discern between the different classes.
his shows that the large array of features from optical to far-IR is
elping to separate sources that would have been otherwise hard to
ntangle in single colour–colour/magnitude diagrams. 
(v) Investigating the sources that had a corresponding ASKAP

88/960/1320 MHz radio or XMM–Newton X-ray detection showed
hat, as expected, the majority of the radio/X-ray detected sources
ere (when restricting to sources not classed as Unknown) pre-
ominantly classed as extragalactic ( ∼89 per cent and ∼64 per cent,
espectively). 

(vi) The proportions of radio AGNs and galaxies were found
o vary with radio flux density. The brightest flux densities are
ominated by AGN, then towards lower flux densities the fraction
f galaxies increases as we start to pick up fainter emission from
tar-formation from galaxies, as e xpected. Une xpectedly, at about
 888MHz , F 1320MHz < 7 mJy, the number of galaxies compared to
GN starts decreasing again. We expect this could be accounted for
y selection bias, where the faint AGN population is easier to classify
han the faint galaxy population. 

(vii) Quaia surv e y (Store y-Fisher et al. 2023 ) AGN candidates
ere predominantly classified as AGN ( ∼ 85 per cent), as expected.
nly ∼14 per cent of the Quaia AGN candidates were classed

s Unknown. This implies that the sample of AGN in the Quaia
atalogue are well represented by the AGN training sample for the
RF classifiers, which are mostly made up of the bright broad-line
GN. Those classed as Unknown are possibly the underrepresented
arrow-line region AGN. 
(viii) VMC near-IR colour–colour magnitude diagrams of the

rightest Unknown sources ( K s < 19.8 mag) revealed that the main
lasses missing from the classifier are main-sequence stars and fainter
xamples (than are currently in the training set) of Milky Way stars
PM) and RGB stars. 

(ix) It is also possible to give a tentativ e e xtragalactic classification
o Unknowns that have X-ray or radio counterparts. Plotting unWISE
 1 and SMASH g bands against XMM–Newton flux showed that the
ajority of the Unknowns lie in the regions in these plots occupied by
GNs and galaxies. Ho we ver, the possibility of spurious alignments
oes lower the reliability of this. 

The majority ( ∼71 per cent for all sources, ∼98 per cent for
ources with P class > 80 per cent) of sources are classed as Unknown.

hilst some of this is due to some missing classes such as main-
equence stars (other than O and B types) and fainter Milky Way
tars, this is mostly due to these sources being fainter than the
pectroscopically observ ed e xamples we pro vided the classifier to
e trained upon. Therefore more spectroscopy of fainter sources is
equired. For the sources that are within the brightness range of the
raining set, but were still classed as Unknown, more classes are
equired, such as main sequence stars that are not of type O or B, as
ell as fainter examples of Milky Way stars. Deeper photometry from

urv e ys such as optical LSST, as well as a complimentary mid-IR
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urv e y, would be preferable to reduce the amount of faint sources in
he VMC catalogue with the majority of features missing. Ho we ver,
ithout the spectroscopy for sources at fainter magnitudes to train 
pon, the majority will remain Unknown. 
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