From AGB stars to Cepheids

Martin Groenewegen

Royal Observatory of Belgium, Brussels marting@oma.be

Overview Talk

- Herschel-PACS, GAIA, VMC
- The distance to the Galactic Centre (Gr., Udalski, Bono, 2008, A&A 481, 441)

Herschel

4th ESA Cornerstone mission Launch (not before) January 2009

PACS - SPIRE - HIFI70-110-170250-350-500 μ m filters60-210200-670 μ m spectroscopyHIFI 7-bands that cover 157-213, 236-625 μ m

Belgium 20% Co-PI in PACS (C. Waelkens) IMEC, CSL, IvS (ICC)

PACS GT

Belgian Guaranteed Time: 380 hours

involved in GTKP: Nearby Galaxies (50h Gent) Quasars (30h IAGL) Star Formation, Debris disks (70h, KUL) Solar System (20h, KUL)

PI. of GTKP on post-main-sequence objects (140h) ROB, IvS, IAGL (Vienna, Heidelberg, SAG6)

PACS GTKP

In its most general terms this GT KP aims at studying the

• Circumstellar matter in evolved objects

AGB, RSG, Post-AGB, PNe, WR, LBV, SN

- Photometric mapping of nearby objects
- Spectroscopy of nearby objects

Mapping of nearby objects

Goal: Study

Study of asymmetries in, and the time evolution of, the mass-loss process in post-MS objects

- Well studied process in optical and NIR, but non-optimal wavelength region
- IRAS: poor resolution
- ISO also gave few results (PHOT32 mode difficult to calibrate; poor resolution and mapping area)
- PACS/SPIRE resolution begins to approach that of current mm-interferometers

Fig. 1. 90 μ m image of YCVn taken with PHT-CI 00 array detector and C90 filter displayed in linear brightness scale.

Fig. 2. 160 µm image of Y CVn taken with PHT-C200 array detector and C160 filter displayed in linear brightness scale.

Y CVn; Izumiura et al. (1996), $8' \times 35'$ PHT32 map

Implementation

PACS: Maps at 70 + 170 μ m. PACS: 78 AGB/RSG, 16 post-AGB/PN, 8 WR/LBV

SPIRE: default is all 3 wavelengths

SPIRE GT: 27 targets, also observed with PACS (+5 SNe observed with PACS + SPIRE)

(Because of time limitation and flux-levels a larger overlap between PACS and SPIRE could not be achieved).

Spectroscopy of nearby objects

Goal: Study of dust properties, molecular lines, emission lines

NGC 6302; Molster et al., SWS + LWS spectrum Brussels, 6 May 2008 – p.9/3:

Dust and Ices in FIR

mineral	chemical	'60+' band
	formula	positions [μ m]
fosterite	Mg_2SiO_4	69–70
fayalite	Fe_2SiO_4	93–94, 110
diopside	$CaMgSi_2O_6$	65-66
calcite	CaCO ₃	92
dolomite	$CaMg(CO_3)_2$	62
graphite	С	50–70
water ice	H_2O	62
methanol ice	$lpha$ -CH $_3$ OH	68, 88.5
dry ice	CO_2	85
PAHs "flopping modes"		(far-IR)

Molecular- and emission lines

[O I]	63.184
[Si I]	68.473
[O III]	88.35
[N II]	121.898
[Si I]	129.682
[O I]	145.525
[C II]	157.74
CO(13-12)	200.3
CO(40-39)	65.
H, H_2O, NH_3, CH, HCN	

Implementation

PACS: Cover entire 60-210 μ m at Nyquist sampling Spatial information: 5 × 5 pixels = 47" × 47" PACS GT: 27 AGB/RSG, 26 post-AGB/PN, 2 WR/LBV SPIRE GT: 23 targets also observed with PACS

SPIRE GT: 23 targets, also observed with PACS (+1 SN with SPIRE and 3 with PACS)

GAIA

Member of CU7 WP on specific object studies

• LPV (Thomas Lebzelter; A. Jorissen)

• RR Lyrae and Cepheids (Gisella Clementini)

CU7-3 meeting in Leuven (Nov 06) scientific interest: distance scale (Cepheids, RR Lyrae), LPVs, EB (combining $LC + RV + T_{eff}$)

VMC

VMC = VISTA Magellanic Cloud Survey PI. Maria-Rosa Cioni (University of Hertfordshire)

- VISTA
- 1 of 6 selected Public Surveys
- Survey in YJK of LMC, SMC, Bridge & Stream

VISTA

- The Visible & Infrared Survey Telescope for Astronomy (VISTA)
- Originally the result of an application of Queen Mary University of London on behalf of a consortium of 18 Universities to the UK Joint Infrastructure Fund that was approved in summer 1999
- To be placed on Cerro Paranal and ESO would get a certain fraction of the time
- With the UK joining ESO, VISTA became part of the in-kind contribution

VISTA

- 4.0m primary mirror
- 16 2048 \times 2048 pixel CCDs with 0.34" pixels
- Z, Y, J, H, K + narrow-band

Brussels, 6 May 2008 – p.17/3

VISTA

• 3×2 steps in X and Y

• light green corresponds to 1.5×1.0 degree

• jitter for bad pixels and sky

ESO Public Surveys

- 1990's: ESO Imaging Survey (EIS)
- VST: 3 PS selected in November 2005

P.I. Kuijken et al.KIDS: A 1500 square degree cosmological survey4800h over 8 semesters

P.I. Drew et al. VPHAS+, the VST photometric $H\alpha$ and broad-band survey of the Southern Galactic Plane 840h over 6 semesters

P.I. Shanks et al.The VST ATLAS544h over 4 semesters

ESO Public Surveys

• VISTA

75% of observing time available for PS CfP, deadline March 15, 2006 15 proposals submitted, and reviewed by PSP 10 pre-selected, suggestions for "mergers and marriages" to give 6 proposals final proposals submitted to P79 OPC selection, and setting-up and approval of SMP in 2007 (2008)

VISTA PS selected

VISTA Hemisphere Survey (VHS) VISTA Kilo-degree Infrared Galaxy survey (VIKING) VISTA Deep Extragalactic Observations (VIDEO) Survey UltraVISTA Deep Survey in the COSMOS field VISTA Variables in the Via Lactea (VVV) VISTA near-infrared YJK survey of the Magellanic System (LMC, SMC, Bridge & Stream) - VMC

VISTA PS pointings

VMC pointings

• VST pointings within STEP GTO

VMC

- Total area 184 sq.degrees = 110 tiles
- S/N = 10 at Y = 21.9, J = 21.4, K = 20.3
- 300h in P82,84,86,88,90 + 72h in P83,85,87,89,91 = 1815 hours = 200 n
- First Consortium meeting April 7-8, 2008
- Start in January 2009, first reduced data from mid-2009 onwards

• VDFS:

Cambridge Astronomical Survey Unit (CASU) Wide Field Astronomy Unit (WFAU)

VMC: science

- Primary science goal: determine spatially resolved SFH
- Interaction of MCs
- 3D picture of MCs: red clump, RR Lyrae and Cepheids (12 epochs in *K*)
- AGB, post-AGB, PNe
- Combine with Spitzer (SAGE & S³MC), Akari, Herschel (OTKP) & OGLE-III, super-MACHO
- My interest: SED fitting Mass-loss as a function of pulsation, luminosity, metallicity

Distance to GC

Eisenhauer et al. 2005 ApJ 628, 246 $R_0 = 7.62 \pm 0.32$ kpc

Brussels, 6 May 2008 - p.26/33

Overview Distances

Reid (1993)	Review	8.0 ± 0.5
Eisenhauer et al. (2005)	BH	7.62 ± 0.32
McNamara et al. (2000)	δ Scu	7.9 ± 0.3
Collinge et al. (2006)	RR Lyrae	8.8 ± 0.3
Carney et al. (1995)	RR Lyrae	8.3 ± 1.0
Fernley et al. (1987)	RR Lyrae	8.0 ± 0.65
Groenewegen & Blommaert (2005)	Mira	8.5 to 9.0
Feast & Whitelock (1997)	Cepheid pm	8.5 ± 0.5
Vanhollebeke et al. (2008)	pop. synthesis	8.60 ± 0.50
Paczynski & Stanek (1998)	Red Clump	8.4 ± 0.4
Nishiyama et al. (2006)	Red Clump	7.5 ± 0.4
Babusiaux & Gilmore (2005)	Red Clump	7.7 ± 0.15

Type-II Cepheids

Population-II Cepheids are old, low-mass stars After the exhaustion of core He-burning, move toward lower $T_{\rm eff}$, thus crossing the Cepheid instability strip Intermediate in properties between RR Lyrae and classical δ Cepheids They obey a Period-Luminosity relation (in K) ! Kubiak & Udalski (2003) have searched the OGLE-II database for P2C Cepheids and found 54 objects 70 could be added from OGLE-III

OGLE Lightcurves

P = 0.76 days

P = 9.94 days

Observations

SOFI @ NTT/La Silla. June 24, 28, July 3, 8 2007 DIT= 1.2 sec using a pixelscale of 0.288'' and resulting in a field-of-view of almost 5×5 arcmin. The "auto-jitter" observing block was used with 9-13 exposures. ESO SOFI pipeline **DoPhot** for source extraction Match sources with 2MASS objects and determine off-set with instrumental magnitude 362 epochs of data of 39 P2C 32 RR Lyrae happen to be in the field !

Lightcurves P2C

Lightcurves RRL

PL-relations

Distance to GC

PL-relations give relative distances Calibrating relations: T2C: Matsunaga et al., GCC, M_V -metallicity HB, tied to MS fitting. GC: $14.51 \pm 0.12 \pm 0.07$ RRL: Sollima et al., GC, tied mainly to HST parallax of RR Lyra GC: $14.48 \pm 0.17 \pm 0.07$ Averaged: 14.50 ± 0.10 (random) ± 0.07 (syst.), or $7.94 \pm 0.37 \pm 0.26$ kpc. (on a scale where the LMC has 18.50 ± 0.07)

THE END