A&A 424, 363–369 (2004) DOI: 10.1051/0004-6361:20040496 © ESO 2004

Dirac-Fock energy levels and transition probabilities for oxygen-like Fe xix^{*,**}

V. Jonauskas^{1,***}, F. P. Keenan¹, M. E. Foord², R. F. Heeter², S. J. Rose³, G. J. Ferland⁴, R. Kisielius^{1,***}, P. A. M. van Hoof¹, and P. H. Norrington⁵

¹ Department of Pure and Applied Physics, The Queen's University of Belfast, Belfast BT7 1NN, Northern Ireland, UK

² University of California, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA

³ Department of Physics, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK

⁴ Department of Physics, University of Kentucky, Lexington, KY 40506, USA

⁵ Department of Applied Mathematics and Theoretical Physics, The Queen's University of Belfast, Belfast BT7 1NN, Northern Ireland, UK

Received 22 March 2004 / Accepted 26 May 2004

Abstract. Multiconfigurational Dirac-Fock calculations are reported for 656 energy levels and the 214 840 electric dipole (E1), electric quadrupole (E2) and magnetic dipole (M1) transition probabilities in oxygen-like Fe xix. The spectroscopic notations as well as the total transition probabilities from each energy level are provided. Good agreement is found with data compiled by NIST.

Key words. atomic data

1. Introduction

Atomic data for O-like Fe xix have been extensively studied under the framework of the IRON Project (Hummer et al. 1993). Galavis et al. (1997) present radiative rates for forbidden transitions in O-like ions with $Z \leq 28$, for the n = 2 complex. Butler & Zeippen (2001) provide energy levels, electron impact collision strengths and rates for transitions among the 92 lowest levels of the n = 2 and n = 3 complexes of Fe xix. The atomic structure code SUPERSTRUCTURE (SS) (Eissner et al. 1974) was employed by both sets of authors. On the other hand, McLaughlin et al. (2001) present the 25 lowest energy levels and effective collision strengths, calculated with the atomic structure code civ3 (Hibbert 1975), and the Breit-Pauli version of the R-matrix codes (Berrington et al. 1995), respectively. Zhang & Sampson (2002) obtain relativistic distortedwave collision strengths and oscillator strenghts for transitions among 10 lowest levels of the n = 2 complex.

High resolution spectra of astrophysical sources require accurate atomic data for reliable plasma modelling. In particular, the *Chandra* and *XMM-Newton* satellites provide spectra with particularly large effective areas in the 6 to 18 Å wavelength range, covering Fe xix lines arising from the $n \ge 3$ complex (Behar et al. 2001; Heyden et al. 2003; McKernan et al. 2003). To allow the reliable interpretation of these lines, we have studied Fe xix transitions among the levels of the 25 lowest configurations originating from the n = 3, 4 and 5 complexes. Previous calculations cover a smaller range of transitions.

In the present paper we report calculations for energy levels, transition probabilities and oscillator strengths for electric dipole (E1), electric quadrupole (E2), and magnetic dipole (M1) transitions among 656 levels of oxygen-like Fe xix. A comparison between NIST data and our calculations, as well as the energy levels of McLaughlin et al. (2001) and Butler & Zeippen (2001), is made. The five strongest and the sum of all the radiative transition probabilities (useful to obtain decay branching ratios) from the levels are also presented.

2. Calculations

The GRASP code of Dyall et al. (1989); Norrington (2003); Parpia et al. (1996) is used for the calculation of wave functions as well as the matrix elements of the Dirac-Coulomb-Breit Hamiltonian and transition operators. As a result, direct and indirect relativistic effects are included in the calculations. One-electron wave functions, obtained by solving multiconfigurational Dirac-Fock (MCDF) equations, were used to build

 $[\]star$ Tables 1 and 5 are only available in electronic form at <code>http://www.edpsciences.org</code>

^{**} Tables 6 to 8 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/424/363

^{***} Associated Research Fellow, Vilnius University Research Institute of Theoretical Physics and Astronomy, A. Goštauto 12, 01108 Vilnius, Lithuania.

configuration state wave functions. The intermediate coupling wave functions:

$$\Psi_{\gamma}(J) = \sum_{\alpha} c_{\gamma}(\alpha J) \,\phi(\alpha J) \tag{1}$$

are generated in the basis $\phi(\alpha J)$ of configuration state functions (CSF) by diagonalizing the Dirac-Coulomb-Breit Hamiltonian matrix. The frequency-dependent transverse Breit interaction operator is used for the calculation of Breit matrix elements. QED corrections are considered in the first order of perturbation theory, and the correlation corrections taken into account by the configuration interaction (CI) method. The relativistic line strengths are obtained from matrix elements of frequency-dependent transition operators. Coulomb and Babushkin gauges of the electric transition operators allow us to estimate the accuracy of wave function expansion in the intermediate coupling.

Results are presented for total number of 656 lowest energy levels in Fe xix. We consider 565 energy levels arising from the $1s^22s^22p^4$, $1s^22s^12p^5$, $1s^22p^6$, $1s^22s^22p^3nl$, $1s^22s^12p^43l'$, $1s^22s^12p^44s^1$, $1s^22s^12p^44p^1$, and $1s^22p^53l'$ (n =3, 4, 5, l = 0, ..., n - 1, l' = 0, 1, 2) configurations. Due to the high density of levels between highly excited configurations, and strong configuration interaction between these, there are also included some energy levels of other configurations (38 levels of $1s^22s^12p^44d^1$ and 41 levels of $1s^22s^12p^44f^1$) with calculated binding energies larger than our chosen cutoff value, which corresponds to the highest level of the $1s^22s^22p^35g^1$ configuration.

A large CI basis is used to generate one-electron wave functions solving MCDF equations as well to obtain accurate intermediate coupling wave functions diagonalizing the Dirac-Coulomb-Breit Hamiltonian matrix. We include one-electron excitations from 2s and 2p orbitals of the $1s^22s^22p^4$ configuration up to the 7*l* orbital, and two-electron excitations from 2s or/and 2p orbitals to all possible combinations of two electrons in the shells with n = 3. The level energies and intermediate coupling wave functions obtained after the diagonalization of the Dirac-Coulomb-Breit Hamiltonian matrix are then used to evaluate the transition probabilities, oscillator and line strengths for electric dipole, electric quadrupole and magnetic dipole transitions among the 656 lowest levels in our calculations.

3. Results and discussion

The 656 fine-structure levels which give rise from the above mentioned configurations are listed in Table 1. The indexes for levels presented in the first column of Table 1 are used in all tables. Energy levels are given in cm^{-1} relative to the ground state $1\text{s}^2\text{2s}^2\text{2p}^4$ ³P₂. Configuration as well as term notations presented in the second and third columns have the primary contribution to the wavefunction of Eq. (1) obtained after Dirac-Coulomb-Breit matrix diagonalization. For brevity, filled 1s^2 shells are omitted in the notations of configurations, and intermediate many-electron quantum numbers are shown in the parentheses. Leading percentage compositions

are equal to squared expansion coefficients $c_{\gamma}(\alpha J)$ for the intermediate coupling function of Eq. (1), and are limited to values larger than 10%. As was mentioned above, diagonalization of the Dirac-Coulomb-Breit matrix, which is obtained in the *jj*-coupling scheme, provides expansion coefficients for the intermediate coupling functions in the basis of CSF. We present the CSF in the LS-coupling scheme. Therefore, the corresponding percentage compositions are obtained from coefficients calculated in the *jj*-coupling scheme using termcoupling coefficients. The expansion of the intermediate coupling function in the CSF basis depends on the model used in calculations. Leading percentage compositions obtained after Dirac-Coulomb matrix diagonalization differ from our presented values. The discrepancies between the two sets of coefficients are not large, but in some cases the order of levels identified by the largest contribution of CSF can be different. Calculated energies of levels can also change after inclusion of Breit and QED corrections.

Some levels identified by the CSF obtained in LS-coupling scheme with the largest contribution to an intermediate coupling function have the same spectroscopic notations. To ensure the completeness of the spectroscopic dataset, we suggest new spectroscopic notations for levels with the same spectroscopic identities. In some cases, the mixing of CSF defined in LS-coupling scheme is so strong that it is difficult to make definite identifications of levels. The mixing of CSF especially increases for highly excited levels where the separation between level energies decreases. Leading percentages of levels show that the LS-coupling scheme is not satisfactory for highly excited states. Proposed spectroscopic notations for levels with the same largest contribution of LS-coupling CSF are presented in Table 2. If two levels have the same manyelectron quantum numbers for a given configuration in the second and third columns of Table 1, the identification of the level with the smaller contribution to the intermediate coupling wave function is changed to that of the secondary CSF. If this secondary function is employed for the identification of some other level, then the third CSF is checked. The spectroscopic notation of level 492 has had its LS-configuration state function re-assigned to level 482. However, no other level in the second and third columns of Table 1 has the new spectroscopic notation proposed for level 492. Therefore, no spectroscopic notation has been assigned to level 492 in the second column of Table 2.

In Table 3 we compare our calculated energy levels as well as the data obtained by McLaughlin et al. (2001) and Butler & Zeippen (2001) with values compiled by NIST (National Institute for Standards and Technology: www.physics.nist.gov). Fairly good agreement is obtained for the MCDF calculations, with the energy levels agreeing to better than 2% with the NIST values. Levels 10 ($2p^{6}$ $^{1}S_{0}$) and 9 ($2s^{1}2p^{5}$ $^{1}P_{1}$) show the largest differences of 1.9% and 1.6%, respectively. All highly excited levels agree to better than 1%. Only level 493 has a large deviation from the NIST energy, but even this is only 1.3%. The percentage composition of the *LS*-coupling CSF for the level shows that there is strong mixing between CSF and no single CSF has a contribution exceeding 50%. Our energy of ground state

Table 2. Suggested change of spectroscopic identifications of levels to ensure the completeness of spectroscopic dataset. The indexes of levels for which spectroscopic identifications are changed are presented in the first column. The second column contains index of level with the same highest contribution of configuration state function (Table 1) as level from the first column before change. Identification of level with index 492 was changed due to use for identification its *LS*-configuration state function for level with index 482. Indexes of levels in the first two columns are taken from Table 1.

Index	Index	Changed LS-configuration
47	36	2s ² 2p ³ (² P) 3p ¹ (¹ P)
55	39	$2s^2 \ 2p^3 \ (^2P) \ 3p^1 \ (^1D)$
86	81	$2s^2 \; 2p^3 \; (^2P) \; 3d^1 \; (^3P)$
90	80	$2s^2 \ 2p^3 \ (^2P) \ 3d^1 \ (^1D)$
195	193	$2s^1 2p^4 (^2P) 3d^1 (^3D)$
215	206	$2p^{5} (^{2}P) 3p^{1} (^{1}D)$
233	263	$2p^{5}$ (² P) $3d^{1}$ (¹ D)
258	249	$2s^2 \; 2p^3 \; (^2D) \; 4p^{1-1}F$
293	305	$2s^2 \; 2p^3 \; (^2D) \; 4f^{1 \; 3}F$
309	294	$2s^2 \; 2p^3 \; (^2D) \; 4f^{1 \ 3}D$
325	320	$2s^2 \; 2p^3 \; (^2P) \; 4d^{1-1}D$
339	330	$2s^2 \; 2p^3 \; (^2P) \; 4f^{1 \; 3}F$
364	354	$2s^1 2p^4 (^4P) 4p^{1 3}P$
379	411	$2s^1 2p^4 (^4P) 4f^{15}D$
400	402	$2s^1 2p^4 (^4P) 4d^{1 3}D$
406	374	$2s^1 2p^4 (^4P) 4d^{1 3}P$
414	386	$2s^1 2p^4$ (⁴ P) $4f^{1 3}F$
420	413	$2s^1 \ 2p^4 \ (^4P) \ 4f^{1 \ 5}D$
433	454	2s ² 2p ³ (² D) 5s ¹ ³ D
469	472	2s ² 2p ³ (² D) 5p ¹ ¹ P
471	466	$2s^2 \ 2p^3 \ (^2D) \ 5p^{1-1}F$
482	486	$2s^1 \; 2p^4 \; (^2D) \; 4d^{1 \ 3}S$
492		$2s^1 2p^4 (^2P) 4s^{1 \ 1}P$
495	529	2s ² 2p ³ (² D) 5d ¹ ³ P
501	536	$2s^1 2p^4 (^2S) 4p^{1 3}P$
502	550	$2s^2 \ 2p^3 \ (^2D) \ 5g^{1-1}G$
506	544	2s ² 2p ³ (² D) 5g ¹ ³ G
515	560	$2s^2 2p^3 (^2D) 5f^{1-1}G$
520	559	2s ² 2p ³ (² D) 5f ¹ ³ P
533	554	$2s^1 2p^4 (^2D) 4f^{1 3}P$
542	528	2s ² 2p ³ (² P) 5s ¹ ³ P
545	573	$2s^2 \ 2p^3 \ (^2D) \ 5g^{1-1}F$
548	571	2s1 2p4 (2D) 4f1 3D
551	581	2s ² 2p ³ (² D) 5g ¹ ³ G
574	546	2s1 2p4 (2D) 4f1 3D
583	582	$2s^1 2p^4 (^2P) 4s^{1 3}P$
592	579	2s ² 2p ³ (² P) 5s ¹ ³ P
608	647	$2s^2 \; 2p^3 \; (^2P) \; 5g^{1-1}F$
633	594	$2s^1 \; 2p^4 \; (^2S) \; 4p^1 \; {}^3P$
648	609	$2s^2 \ 2p^3 \ (^2P) \ 5g^{1-3}G$
649	616	2s ² 2p ³ (² P) 5f ¹ ³ F

-230793799 cm⁻¹ is slightly higher than NIST value of -231017600 ± 142300 cm⁻¹. Due to this some calculated energies of levels relative to the calculated ground energy are lower than NIST values presented in Table 3.

The average deviation between our energy levels and the NIST values is only 0.35%. On the other hand, the average deviation for energies obtained by McLaughlin et al. (2001) is 0.8%. For the energies in common, the average deviation of the Butler & Zeippen (2001) values is 0.8%, while for our data this is only 0.6%. The largest deviation for energies obtained by McLaughlin et al. (2001) is 3.2% for the first excited level $(2s^22p^4 {}^{3}P_0)$ and 2.7% for the second $(2s^22p^4 {}^{3}P_1)$. Butler & Zeippen (2001) energies show an average deviation of 0.6% with NIST data, while the average for our values is 0.45% for the same range of levels. The largest deviations for energies obtained by Butler & Zeippen (2001) is 3.3% for level 4 $(2s^22p^{4-1}D_2)$ and 1.6% for levels 10 $(2p^{6-1}S_0)$ and 9 ($2s^{1}2p^{5} {}^{1}P_{1}$). Therefore, our energy levels agree better with the NIST values than those calculated by previous authors. The main reason for this is that we use a larger base of CSF, and a fully relativistic approach. Level ordering differs from NIST in both large-scale calculations.

The total number of dipole allowed and intercombination E1-type transitions is 58 390, while the complete set of forbidden transitions totals 136866. Table 6 includes only E1-type transitions for which oscillator strengths exceed 0.001. All forbidden E2-type transitions with $f \ge 10^{-11}$ are reported in Table 7. Table 8 provides data for M1-type transitions with f-values exceeding 10⁻⁷. Differences between Babushkin and Coulomb gauges (velocity and length forms of the electric transition operators in the nonrelativistic limit), which are an additional indicator of accuracy for the wavefunctions, do not exceed 20% for most strong E1-type transitions ($f \ge 0.1$). The average deviation between the two forms is 5.3% for 812 lines with $f \ge 0.1$ and 9.6% for 4524 lines with $f \ge 0.01$. The electric quadrupole transition has the largest contribution to the lifetime of the first excited level, the difference between the two forms is large, and the oscillator strength is very small. E2-type transition from level 5 (79% $2s^22p^{4} {}^{1}S_0 + 19\% 2s^22p^{4} {}^{3}P_0$) also shows a large deviation of 80% between the two forms, and a small *f*-value ($f = 2.5 \times 10^{-11}$). On the other hand, our obtained leading compositions of wavefunctions reports similar values for these three levels as NIST ones; 1: 90% $(2s^2 2p^4 {}^{3}P_2) +$ $10\% (2s^2 2p^{4} {}^1D_2); 2: 80\% (2s^2 2p^{4} {}^3P_0) + 20\% (2s^2 2p^{4} {}^1S_0);$ 5: 78% $(2s^2 2p^{4-1}S_0) + 20\% (2s^2 2p^{4-3}P_0)$. The deviation between calculated (Babushkin gauge) and NIST characteristics of the transition from the first excited level does not exceed 4%.

Our calculated wavelengths, transition probabilities, oscillator and line strengths as well as the NIST values are presented in Table 4. The accuracy of the transition wavelengths is well above 1% for short wavelengths ($\lambda < 16$ Å). The largest deviations of wavelengths (up to 4%) are obtained for transitions which involve levels 4, 9 and 10, as these show the largest differences in energies from NIST data. Our probabilities for most transitions are slightly smaller than the corresponding NIST values, with intercombination E1-type transitions showing the largest deviations. The difference for their radiative

Table 3. Comparison of some calculated energies of Fexix levels with data presented by NIST (E^{NIST}). $E^{\text{McLaughlin}}$ – values obtained by McLaughlin et al. (2001), E^{Butler} – energies calculated by Butler & Zeippen (2001), E^{GRASP} – our values. Indexes of levels in the first column are taken from Table 1. Energies are in cm⁻¹.

Index	Configuration	LSJ	$E^{\rm NIST}$	$E^{McLaughlin}$	E^{Butler}	E^{GRASP}
2	$2s^2 2p^4$	$^{3}P_{0}$	75 250.	72 817.	74 766.	75 446.
3	$2s^2 \ 2p^4$	$^{3}P_{1}$	89 441.	87 003.	90 160.	88 791.
4	$2s^2 \ 2p^4$	$^{1}D_{2}$	168 852.	171 145.	174 400.	170 847.
5	$2s^2 \ 2p^4$	${}^{1}S_{0}$	325 140.	322 490.	328 726.	326 536.
6	$2s^1 2p^5$	$^{3}P_{2}$	922 890.	926 563.	932 013.	933 081.
7	$2s^1 2p^5$	$^{3}P_{1}$	984 740.	988 359.	995 686.	995 006.
8	$2s^1 2p^5$	$^{3}P_{0}$	1 030 020.	1 032 521.	1 041 743.	1 039 692.
9	$2s^1 2p^5$	$^{1}P_{1}$	1 267 600.	1 279 832.	1 287 358.	1 287 773.
10	2p ⁶	${}^{1}S_{0}$	2 134 180.	2 157 557.	2 168 921.	2 175 645.
12	$2s^2 \ 2p^3 \ (^4S) \ 3s^1$	${}^{3}S_{1}$	6 680 000.	6717208.	6 695 619.	6 668 591.
13	$2s^2 \ 2p^3 \ (^2D) \ 3s^1$	$^{3}D_{2}$	6 787 000.	6 818 206.	6 799 977.	6774890.
14	$2s^2 \ 2p^3 \ (^2D) \ 3s^1$	$^{3}D_{1}$	6 788 000.	6 820 650.	6 801 973.	6776938.
15	$2s^2 \ 2p^3 \ (^2D) \ 3s^1$	$^{3}D_{3}$	6 818 000.	6 853 053.	6 835 715.	6 807 447.
16	$2s^2 \ 2p^3 \ (^2D) \ 3s^1$	$^{1}D_{2}$	6 834 000.	6 873 424.	6 855 497.	6 827 890.
20	$2s^2 \ 2p^3 \ (^2P) \ 3s^1$	$^{3}P_{0}$	6 907 000.	6 929 307.	6913096.	6 891 588.
21	$2s^2 \ 2p^3 \ (^2P) \ 3s^1$	$^{3}P_{1}$	6 923 000.	6 937 398.	6921107.	6 899 384.
25	$2s^2 \ 2p^3 \ (^2P) \ 3s^1$	$^{3}P_{2}$	6 970 000.	6 991 802.	6 978 533.	6956007.
26	$2s^2 \ 2p^3 \ (^2P) \ 3s^1$	$^{1}P_{1}$	6 985 000.	7 008 231.	6 994 093.	6972035.
53	$2s^2 \ 2p^3 \ (^2P) \ 3d^1$	$^{3}D_{3}$	7 249 000.		7 266 108.	7 242 650.
65	$2s^2 \ 2p^3 \ (^2D) \ 3d^1$	$^{3}P_{2}$	7 370 000.		7 394 243.	7 370 636.
68	$2s^2 \ 2p^3 \ (^2D) \ 3d^1$	$^{3}D_{3}$	7 396 000.		7 417 913.	7 390 818.
71	$2s^2 \ 2p^3 \ (^2D) \ 3d^1$	$^{3}D_{2}$	7 405 000.		7 423 125.	7 398 130.
76	$2s^2 \ 2p^3 \ (^2D) \ 3d^1$	$^{1}F_{3}$	7 449 000.		7 469 769.	7 442 848.
78	$2s^2 \ 2p^3 \ (^2P) \ 3d^1$	${}^{3}F_{3}$	7 450 000.		7 483 374.	7 462 620.
85	$2s^2 \ 2p^3 \ (^2P) \ 3d^1$	$^{3}P_{2}$	7 468 000.		7 537 621.	7 515 849.
86	$2s^2 \ 2p^3 \ (^2P) \ 3d^1$	$^{3}D_{1}$	7 567 000.		7 500 485.	7 522 780.
89	$2s^2 \ 2p^3 \ (^2P) \ 3d^1$	$^{1}F_{3}$	7 565 000.		7 543 025.	7 560 086.
90	$2s^2 \ 2p^3 \ (^2P) \ 3d^1$	$^{3}D_{2}$	7 554 000.		7 583 729.	7 563 304.
92	$2s^2 \ 2p^3 \ (^2P) \ 3d^1$	$^{1}P_{1}$	7 606 000.		7 644 484.	7 623 053.
239	$2s^2 \ 2p^3 \ (^4S) \ 4d^1$	$^{3}D_{2}$	9 242 000.			9 229 319.
241	$2s^2 2p^3 (^4S) 4d^1$	$^{3}D_{1}$	9 244 000.			9 236 651.
242	$2s^2 2p^3 (^4S) 4d^1$	$^{3}D_{3}$	9 248 000.			9 238 888.
275	$2s^2 \ 2p^3 \ (^2D) \ 4d^1$	$^{3}F_{3}$	9 359 000.			9 358 081.
276	$2s^2 2p^3 (^2D) 4d^1$	$^{3}D_{2}$	9 374 000.			9 372 252.
282	$2s^2 \ 2p^3 \ (^2D) \ 4d^1$	$^{3}D_{3}$	9 383 000.			9 391 730.
286	$2s^2 \ 2p^3 \ (^2D) \ 4d^1$	$^{3}P_{2}$	9 395 000.			9 399 299.
290	$2s^2 \ 2p^3 \ (^2D) \ 4d^1$	3S_1	9 403 000.			9 409 036.
292	$2s^2 \ 2p^3 \ (^2D) \ 4d^1$	$^{1}D_{2}$	9 417 000.			9413571.
298	$2s^2 \ 2p^3 \ (^2D) \ 4d^1$	$^{1}\mathrm{F}_{3}$	9 417 000.			9418361.
321	$2s^2 2p^3 (^2P) 4d^1$	$^{3}F_{3}$	9 483 000.			9 504 377.

probabilities varies from 4% to 20%. Transitions $2s^12p^5 {}^{3}P_1 \rightarrow 2s^22p^4 {}^{1}S_0$ and $2s^12p^5 {}^{1}P_1 \rightarrow 2s^22p^4 {}^{3}P_0$ have the largest deviation of 20% and 16%, respectively. On the other hand, their

contributions to the radiative lifetimes of the levels do not exceed 1%. The deviation for other intercombination E1-type transitions does not exceed 12%, while transition probabilities

Table	3.	continue	ed

Index	Configuration	LSJ	E^{NIST}	$E^{ m McLaughlin}$	E^{Butler}	E^{GRASP}
322	$2s^2 2p^3 (^2P) 4d^1$	$^{3}D_{1}$	9 494 000.			9 514 678.
325	$2s^2 \ 2p^3 \ (^2P) \ 4d^1$	$^{3}P_{2}$	9 492 000.			9 556 216.
326	$2s^2 \ 2p^3 \ (^2P) \ 4d^1$	${}^{3}P_{1}$	9 556 000.			9 557 202.
332	$2s^2 \ 2p^3 \ (^2P) \ 4d^1$	$^{1}F_{3} \\$	9 552 000.			9 566 948.
334	$2s^2 \ 2p^3 \ (^2P) \ 4d^1$	$^{1}P_{1}$	9 573 000.			9 593 317.
430	$2s^2 \; 2p^3 \; (^4S) \; 5d^1$	$^{3}D_{3}$	10 190 000.			10 148 967.
493	$2s^2 \ 2p^3 \ (^2D) \ 5d^1$	$^{3}F_{3}$	10 420 000.			10 282 236.
526	$2s^2 \ 2p^3 \ (^2D) \ 5d^1$	$^{3}D_{3}$	10 330 000.			10 313 519.
529	$2s^2 \ 2p^3 \ (^2D) \ 5d^1$	$^{3}D_{2}$	10 330 000.			10316701.
535	$2s^2 \ 2p^3 \ (^2D) \ 5d^1$	$^{1}D_{2}$	10 360 000.			10 324 287.
537	$2s^2 \ 2p^3 \ (^2D) \ 5d^1$	$^{1}F_{3} \\$	10 390 000.			10 325 950.
600	$2s^2 \; 2p^3 \; (^2P) \; 5d^1$	$^{3}F_{3}$	10 500 000.			10 425 386.
605	$2s^2 \; 2p^3 \; (^2P) \; 5d^1$	$^{3}D_{1}$	10 450 000.			10 429 724.
621	$2s^2 \; 2p^3 \; (^2P) \; 5d^1$	$^{3}P_{1}$	10 500 000.			10 476 007.
630	$2s^2 \; 2p^3 \; (^2P) \; 5d^1$	$^{1}F_{3} \\$	10 500 000.			10 483 130.
631	$2s^2 \; 2p^3 \; (^2P) \; 5d^1$	$^{3}D_{3}$	10 500 000.			10 484 213.
633	$2s^2 \ 2p^3 \ (^2P) \ 5d^1$	$^{1}P_{1}$	10 510 000.			10 485 769.

.

for other lines agree to better than 10%. This is highly satisfactory for such a large-scale calculation. The average deviation between our radiative transition probabilities and NIST values presented in Table 4 is 5.8%.

The five largest spontaneous radiative transition probabilities from each level are given in Table 5, and the sum of all E1, E2, and M1 radiative transition probabilities from the corresponding level are provided in the last column. Forbidden E2 and M1 transitions have the largest weight for transitions between fine-structure levels of the ground configuration, where E1-type transitions are forbidden. Levels 3, 4, and 5 (2s²2p⁴ ³P₁, ¹D₂, and ¹S₀) decay mainly due to magnetic dipole transitions. The contribution of electric quadrupole transitions from these levels is negligible. For highly excited levels, the contribution of magnetic dipole transitions is small. On the other hand, the first excited level decays only through E2-type transition. Contribution of E2-type forbidden transitions to the lifetimes of highly excited levels is noticeable for levels of the $2s^22p^33p^1$ and $2s^12p^43d^1$ configurations. For example, E2-type transitions amount to 40% of the lifetime for level 24 $(2s^22p^3)^{(4S)} 3p^{1/3}P_0)$, 28% for level 138 $(2s^{1}2p^{4})$ (4P) $3d^{1}$ (4P), and 27% for level 33 ($2s^22p^3$ (²D) $3p^{1-1}F_3$). Finally, electric quadrupole transitions have contributions exceeding 10% of the total transition probability for 12 levels (24, 138, 33, 30, 34, 23, 28, 22, 176, 126, 18 and 172).

4. Conclusion

In the present paper we have reported large-scale calculations in the multiconfigurational Dirac-Fock approach of 656 lowest energy levels as well as corresponding transition wavelengths, absorption oscillator strengths and radiative transition probabilities for electric dipole, electric quadrupole as well as magnetic dipole type transitions in oxygen-like Fe xix. To our knowledge, our work represents the largest calculation to date for Fe xix. Fairly good agreement is obtained between our calculated and NIST data.

Spectroscopic notations of levels in the *LS*-coupling scheme have been presented, and checked for their completeness. Contributions of CSF to intermediate coupling wave functions indicate that *LS*-coupling scheme is not satisfactory for highly excited states.

The five major radiative probabilities from each level and the total transition probability have been provided, taking into account forbidden transitions. The largest contributions of forbidden E2 and M1 transitions have been obtained for the lifetimes of fine-structure levels of the ground configuration.

Agreement between our presented theoretical values and available NIST data as well as large basis of configuration state functions and relativistic Dirac-Fock approach, allows us to conclude that our calculations of energy levels and radiative transition data for Fe xix are reliable. They may successfully be used in various plasma codes for the interpretation of astronomical and other spectral observations, especially for high resolution spectra provided by the *Chandra* and *XMM-Newton* satellites.

Acknowledgements. F.P.K. and S.J.R. are grateful to A. W. E. Aldermaston for the award of William Penney Fellowships. This work was supported by PPARC and EPSRC, and also by NATO Collaborative Linkage Grant CLG.979443. We are also grateful to the Defence Science and Technology Laboratory (dstl) for support under the Joint Grants Scheme.

Table 4. Comparison of some calculated (GRASP) Fe xix wavelengths λ , radiative transition probabilities A_{ki}^r , oscillator f_{ik} and line S strengths with values presented by NIST. Indexes of levels in the first two columns are taken from Table 1.

			NIST				GRASP			
k	i	Туре	λ (Å)	A_{ki}^{r} (s ⁻¹)	f_{ik}	S	λ (Å)	A_{ki}^{r} (s ⁻¹)	f_{ik}	S
1	16	E1	14.63	1.40E+11	4.49E-03	1.08E-03	14.65	1.27E+11	4.08E-03	9.85E-04
1	15	E1	14.67	1.10E+12	5.00E-02	1.20E-02	14.69	1.11E+12	5.02E-02	1.21E-02
1	13	E1	14.73	9.80E+11	3.19E-02	7.74E-03	14.76	9.53E+11	3.11E-02	7.56E-03
1	12	E1	14.97	2.50E+12	5.00E-02	1.20E-02	15.00	2.34E+12	4.74E-02	1.17E-02
1	9	E1	78.89	1.30E+10	7.28E-03	9.45E-03	77.65	1.15E+10	6.24E-03	7.98E-03
1	7	E1	101.55	3.17E+10	2.94E-02	4.92E-02	100.50	2.91E+10	2.64E-02	4.37E-02
1	6	E1	108.37	3.90E+10	6.87E-02	1.22E-01	107.17	3.57E+10	6.15E-02	1.08E-01
2	21	E1	14.60	7.50E+11	7.19E-02	3.46E-03	14.65	7.21E+11	6.96E-02	3.36E-03
2	12	E1	15.14	5.10E+11	5.26E-02	2.62E-03	15.17	4.95E+11	5.13E-02	2.56E-03
2	9	E1	83.87	1.60E+09	5.10E-03	1.40E-03	82.49	1.34E+09	4.11E-03	1.12E-03
2	7	E1	109.95	1.60E+10	8.70E-02	3.15E-02	108.75	1.49E+10	7.90E-02	2.83E-02
3	25	E1	14.53	6.80E+11	3.59E-02	5.15E-03	14.56	6.58E+11	3.49E-02	5.02E-03
3	20	E1	14.67	1.10E+12	1.20E-02	1.70E-03	14.70	1.11E+12	1.20E-02	1.74E-03
3	14	E1	14.93	1.20E+12	4.00E-02	5.90E-03	14.95	1.21E+12	4.06E-02	5.99E-03
3	13	E1	14.93	2.50E+11	1.39E-02	2.05E-03	14.96	2.65E+11	1.48E-02	2.18E-03
3	12	E1	15.17	6.70E+11	2.31E-02	3.46E-03	15.20	6.03E+11	2.09E-02	3.14E-03
3	9	E1	84.88	9.30E+08	1.00E-03	8.40E-04	83.40	8.41E+08	8.77E-04	7.22E-04
3	8	E1	106.32	6.10E+10	3.45E-02	3.62E-02	105.16	5.57E+10	3.08E-02	3.20E-02
3	7	E1	111.70	1.26E+10	2.36E-02	2.60E-02	110.35	1.16E+10	2.12E-02	2.31E-02
3	6	E1	120.00	1.04E+10	3.74E-02	4.44E-02	118.44	9.60E+09	3.36E-02	3.94E-02
4	26	E1	14.67	1.10E+12	2.10E-02	5.10E-03	14.70	9.96E+11	1.94E-02	4.69E-03
4	21	E1	14.81	5.60E+11	1.10E-02	2.69E-03	14.86	5.05E+11	1.00E-02	2.45E-03
4	16	E1	15.00	2.20E+12	7.40E-02	1.80E-02	15.02	2.16E+12	7.32E-02	1.81E-02
4	15	E1	15.04	1.10E+11	5.22E-03	1.29E-03	15.07	1.05E+11	5.01E-03	1.24E-03
4	9	E1	91.01	1.49E+11	1.11E-01	1.66E-01	89.53	1.42E+11	1.02E-01	1.51E-01
4	6	E1	132.64	2.20E+09	5.80E-03	1.30E-02	131.19	1.94E+09	5.02E-03	1.08E-02
5	26	E1	15.02	1.40E+12	1.40E-01	7.00E-03	15.05	1.37E+12	1.39E-01	6.91E-03
5	9	E1	106.11	1.10E+10	5.57E-02	1.95E-02	104.03	1.03E+10	5.01E-02	1.72E-02
5	7	E1	151.61	7.90E+08	8.20E-03	4.10E-03	149.60	6.35E+08	6.39E-03	3.15E-03
7	10	E1	87.00	1.20E+10	4.54E-03	3.90E-03	84.70	1.06E+10	3.79E-03	3.17E-03
9	10	E1	115.40	1.61E+11	1.07E-01	1.22E-01	112.63	1.50E+11	9.48E-02	1.05E-01
1	4	E2	592.23	6.00E+00	3.20E-10	2.00E-03	585.32	6.18E+00	3.17E-10	1.90E-03
1	3	E2	1118.06	6.10E-01	6.90E-11	2.90E-03	1126.20	6.14E-01	7.01E-11	2.98E-03
1	2	E2	1328.90	4.90E-01	2.60E-11	1.80E-03	1325.50	5.09E-01	2.68E-11	1.86E-03
4	5	E2	639.67	4.90E+01	6.00E-10	4.70E-03	642.31	4.83E+01	5.97E-10	4.71E-03
1	4	M1	592.23	1.70E+04	8.90E-07	6.50E-01	585.32	1.69E+04	8.69E-07	6.29E-01
1	3	M1	1118.06	1.45E+04	1.63E-06	2.25E+00	1126.20	1.42E+04	1.62E-06	2.26E+00
3	5	M1	424.27	1.50E+05	1.30E-06	4.20E-01	420.62	1.39E+05	1.23E-06	3.84E-01
3	4	M1	1259.27	6.70E+02	2.65E-07	2.48E-01	1218.70	6.99E+02	2.59E-07	2.34E-01
6	9	M1	289.99	2.90E+04	2.20E-07	7.90E-02	281.93	2.91E+04	2.08E-07	7.24E-02
6	7	M1	1613.40	5.20E+03	1.22E-06	2.43E+00	1614.90	5.16E+03	1.21E-06	2.42E+00
7	9	M1	353.53	9.40E+03	1.76E-07	4.62E-02	341.57	9.42E+03	1.65E-07	4.17E-02
8	9	M1	420.91	7.70E+03	6.14E-07	6.39E-02	403.10	8.06E+03	5.89E-07	5.87E-02

References

- Hummer, D. G., Berrington, K. A., Eissner, W., et al. 1993, A&A, 279, 298
- Berrington, K. A., Eissner, W. B., & Norrington, P. H. 1995, Comput. Phys. Commun., 92, 290
- Behar, E., Cottam, J., & Kahn S. M. 2001, ApJ, 548, 966
- Butler, K., & Zeippen, C. J. 2001, A&A, 372, 1083
- Dyall, K. G., Grant, I. P., Johnson, C. T., Parpia, F. A., & Plummer, E. P. 1989, Comput. Phys. Comm., 35, 425
- Eissner, W., Jones, M., & Nussbaumer, H. 1974, Comput. Phys. Commun., 8, 270
- Galavis, M. E., Mendoza, C., & Zeippen, C. J. 1997, A&AS, 123, 159
- Hibbert, A. 1975, Comput. Phys. Commun., 9, 141

- McLaughlin, B. M., Kirby, K. P., Smith, R., Brickhouse, N., & Liedahl, D. A. 2001, J. Phys. B, 34, 4521
- McKernan, B., Yaqoob, T., George, I. M., & Turner, T. J. 2003, ApJ, 593, 142
- Norrington, P. H. 2003, http://www.am.qub.ac.uk/DARC/
- Parpia, F. A., Froese Fischer, C., & Grant, I. P. 1996, Comput. Phys. Comm., 94, 249
- van der Heyden, K. J., Bleeker, J. A. M., Kaastra, J. S., & Vink, J. 2003, A&A, 406, 141
- Zhang, H. L., & Sampson D. H. 2002, At. Data Nucl. Data Tables, 82, 357

V. Jonauskas et al.: Transition rates for Fe xix, Online Material p 1

Online Material

Table 1. Calculated energy levels of Fe xix with spectroscopic identification (in cm^{-1}) relative to the ground energy. The leading percentage compositions of levels which contributions exceed 10% are presented in the last column.

Index	Configuration	LS	J	$E ({\rm cm}^{-1})$	Composition
1	$2s^2 2p^4$	^{3}P	2	-230 793 799.	90%
2	$2s^2 2p^4$	${}^{3}\mathbf{P}$	0	75 445.	$80\% + 19\% 2s^2 2p^{4-1}S$
3	$2s^2 2p^4$	^{3}P	1	88 791.	100%
4	$2s^2 2p^4$	1 D	2	170 847.	90%
5	$2s^2 2p^4$	¹ S	0	326 535.	$79\% + 19\% 2s^2 2p^4 {}^{3}P$
6	$2s^{1} 2p^{5}$	${}^{3}\mathbf{P}$	2	933 080.	99%
7	$2s^{1} 2p^{5}$	3P	1	995.005	97%
8	$2s^{1} 2p^{5}$	3P	0	1 039 692	99%
9	$2s^{1} 2p^{5}$	1 p	1	1 287 772	96%
10	$25 \ 2p^6$	¹ S	0	2 175 645	97%
11	$2s^2 2n^3 (^4S) 3s^1$	⁵ S	2	6615412	90%
12	$2s^{2} 2p^{3} (4S) 3s^{1}$	³ S	1	6 668 591	83%
12	$2s^2 2p^3 (2D) 3s^1$	3D	2	6 774 890	$63\% + 10\% 2s^2 2n^3 (^2P) 3s^{1/3}P + 12\% 2s^2 2n^3 (^2P) 3s^{1/1}D$
14	$2s^2 2p^3 (^2D) 3s^1$	3D	1	6776038	$55\% + 11\% 2s^2 2p^3 (4s) 3s^{-1} 3s^{-1}$
14	$2s^{2} 2p^{2} (D) 3s^{1}$ $2s^{2} 2n^{3} (^{2}D) 3s^{1}$	³ D	1	6 807 447	15% + 11% 25 2p (3) 55 3
15	$2s^{2} 2p^{3} (D) 3s^{2}$		3 2	6 827 800	$74\% + 22\% 2s^2 2n^3 (^2\text{D}) 2s^{1/3}\text{D}$
10	$2s^2 2p^3 (4s) 2s^1$	5D	1	0 827 890. 6 852 162	14% + 25% 28 2p (D) 38 D
17	$2s^{2} 2p^{3}$ (3) $3p^{2}$	5D	1	0 832 102. 6 855 011	84% 770
18	$2s^2 2p^3$ (*S) $3p^2$	5P 5D	2	6 855 911.	11% 2007
19	$2s^{-} 2p^{-} (^{-}S) 3p^{-}$	°Р 3р	3	08/3984.	89%
20	$2s^2 2p^3 (^2P) 3s^4$	³ P	0	6 891 587.	98%
21	$2s^2 2p^3 (^2P) 3s^1$	³ P	1	6 899 384.	$75\% + 21\% 2s^2 2p^3 (^2P) 3s^{-1}P$
22	$2s^2 2p^3$ (4 S) $3p^1$	³ P	1	690/3/3.	$59\% + 11\% 2s^2 2p^3 (2D) 3p^4 3P$
23	$2s^2 2p^3$ (⁴ S) $3p^1$	³ P	2	6928881.	$63\% + 15\% 2s^2 2p^3 (*S) 3p^{-3}P$
24	$2s^2 2p^3$ (⁴ S) $3p^1$	³ P	0	6 938 016.	84%
25	$2s^2 2p^3 (^2P) 3s^1$	°P	2	6 956 006.	$68\% + 13\% 2s^2 2p^3 (^2D) 3s^{1-1}D + 13\% 2s^2 2p^3 (^2D) 3s^{1-3}D$
26	$2s^2 2p^3 (^2P) 3s^1$	¹ P	1	6972034.	$62\% + 18\% 2s^2 2p^3 (^2D) 3s^1 {}^3D + 12\% 2s^2 2p^3 (^2P) 3s^1 {}^3P$
27	$2s^2 2p^3 (^2D) 3p^1$	³ D	1	6987114.	$37\% + 27\% 2s^2 2p^3 (^2D) 3p^{1-1}P$
28	$2s^2 2p^3 (^2D) 3p^1$	³ F	2	7 009 674.	$46\% + 29\% 2s^2 2p^3 (^2D) 3p^{1/3}D + 11\% 2s^2 2p^3 (^2P) 3p^{1/3}D$
29	$2s^2 2p^3 (^2D) 3p^1$	³ D	2	7 028 528.	$55\% + 27\% 2s^2 2p^3 (^2D) 3p^{1/3}F$
30	$2s^2 2p^3$ (² D) $3p^1$	³ F	3	7 0317 65.	$67\% + 13\% 2s^2 2p^3 (^2D) 3p^{13}D + 13\% 2s^2 2p^3 (^2P) 3p^{13}D$
31	$2s^2 2p^3$ (² D) $3p^1$	^{1}P	1	7 043 265.	$45\% + 36\% 2s^2 2p^3 (^2D) 3p^{1-3}D$
32	2s ² 2p ³ (² D) 3p ¹	^{3}D	3	7 045 196.	$54\% + 37\% 2s^2 2p^3 (^2D) 3p^{1-1}F$
33	2s ² 2p ³ (² D) 3p ¹	^{1}F	3	7 065 394.	$48\% + 32\% 2s^2 2p^3 (^2D) 3p^{1} {}^{3}D + 19\% 2s^2 2p^3 (^2D) 3p^{1} {}^{3}F$
34	2s ² 2p ³ (² D) 3p ¹	³ F	4	7 070 421.	100%
35	2s ² 2p ³ (² D) 3p ¹	³ P	0	7 090 786.	$70\% + 24\% 2s^2 2p^3 (^2P) 3p^{1} {}^3P$
36	2s ² 2p ³ (² D) 3p ¹	³ P	1	7 111 290.	$36\% + 16\% 2s^2 2p^3 (^2P) 3p^{1} {}^3S + 15\% 2s^2 2p^3 (^4S) 3p^{1} {}^3P$
37	2s ² 2p ³ (² D) 3p ¹	${}^{3}\mathbf{P}$	2	7 129 866.	$67\% + 13\% 2s^2 2p^3 (^4S) 3p^{1-3}P$
38	2s ² 2p ³ (² P) 3p ¹	^{3}D	1	7 134 136.	$64\% + 17\% 2s^2 2p^3 (^2P) 3p^{1-1}P$
39	2s ² 2p ³ (² D) 3p ¹	^{1}D	2	7 157 955.	$46\% + 20\% \ 2s^2 \ 2p^3 \ (^2P) \ 3p^{1 \ 3}P + 13\% \ 2s^2 \ 2p^3 \ (^2P) \ 3p^{1 \ 1}D$
40	2s ² 2p ³ (⁴ S) 3d ¹	⁵ D	3	7 163 487.	85%
41	$2s^2 2p^3$ (⁴ S) $3d^1$	⁵ D	2	7 163 998.	87%
42	2s ² 2p ³ (⁴ S) 3d ¹	⁵ D	0	7 164 394.	91%
43	$2s^2 \ 2p^3 \ (^2P) \ 3p^1$	^{3}S	1	7 164 476.	$41\% + 27\% \ 2s^2 \ 2p^3 \ (^2P) \ 3p^{1-3}P + 12\% \ 2s^2 \ 2p^3 \ (^2P) \ 3p^{1-1}P$
44	$2s^2 \ 2p^3 \ (^4S) \ 3d^1$	⁵ D	1	7 164 686.	91%
45	$2s^2 \ 2p^3 \ (^2P) \ 3p^1$	³ D	2	7 164 943.	76%
46	2s ² 2p ³ (⁴ S) 3d ¹	⁵ D	4	7 166 775.	90%
47	2s ² 2p ³ (² D) 3p ¹	³ P	1	7 210 375.	$35\% + 26\% \ 2s^2 \ 2p^3 \ (^2P) \ 3p^{1-1}P + 17\% \ 2s^2 \ 2p^3 \ (^2P) \ 3p^{1-3}S$

V. Jonauskas et al.: Transition rates for Fe xix, Online Material p 3

Table 1. continued.

Index	Configuration	LS	J	$E ({\rm cm}^{-1})$	Composition
48	$2s^2 2p^3 (^2P) 3p^1$	³ D	3	7 210 737.	$69\% + 13\% 2s^2 2p^3 (^2D) 3p^{1} {}^{3}F + 12\% 2s^2 2p^3 (^2D) 3n^{1} {}^{1}F$
49	$2s^2 2p^3 (^2P) 3p^1$	³ P	0	7 211 270	$61\% + 15\% 2s^2 2p^3 (^2P) 3p^{1.1}S + 11\% 2s^2 2p^3 (^2D) 3n^{1.3}P$
50	$2s^2 2p^3 (^4S) 3d^1$	³ D	2	7 212 426.	$57\% + 13\% 2s^2 2p^3 (^2D) 3d^{13}D + 10\% 2s^2 2p^3 (^2P) 3d^{11}D$
51	$2s^2 2p^3 (^2P) 3p^1$	³ P	1	7 237 209.	$42\% + 19\% 2s^2 2p^3 (^2P) 3p^{1}P + 11\% 2s^2 2p^3 (^4S) 3p^{1}P$
52	$2s^2 2p^3 (^4S) 3d^1$	^{3}D	1	7 237 895.	81%
53	$2s^2 2p^3 (^4S) 3d^1$	³ D	3	7 238 873.	$69\% + 11\% 2s^2 2p^3 (^2D) 3d^{13}D$
54	$2s^2 2p^3 (^2P) 3p^1$	³ P	2	7 242 650.	$38\% + 32\% 2s^2 2p^3 (^2P) 3p^{1-1}D$
55	$2s^2 2p^3$ (² D) $3p^1$	^{1}D	2	7 272 169.	$43\% + 31\% 2s^2 2p^3 (^2P) 3p^{1-1}D + 12\% 2s^2 2p^3 (^2P) 3p^{1-3}P$
56	$2s^2 2p^3$ (² D) $3d^1$	³ F	2	7 308 270.	65%
57	$2s^2 2p^3$ (² D) $3d^1$	³ F	3	7 319 965.	70%
58	$2s^2 2p^3$ (² D) $3d^1$	^{1}S	0	7 321 082.	79% + 12% 2s ² 2p ³ (² P) 3d ¹ ³ P
59	$2s^2 2p^3$ (² D) $3d^1$	³ G	3	7 326 971.	$64\% + 10\% 2s^2 2p^3 (^2D) 3d^{1/3}F$
60	$2s^2 2p^3$ (² D) $3d^1$	³ G	4	7 327 447.	$51\% + 22\% 2s^2 2p^3$ (² D) $3d^{1}$ ¹ G + 19% $2s^2 2p^3$ (² P) $3d^{1}$ ³ F
61	$2s^2 2p^3$ (² D) $3d^1$	^{3}D	1	7 331 284.	$46\% + 26\% 2s^2 2p^3 (^2D) 3d^{1}P$
62	$2s^2 2p^3$ (² D) $3d^1$	³ F	4	7 349 806.	97%
63	$2s^2 2p^3$ (² D) $3d^1$	³ G	5	7 362 279.	100%
64	$2s^2 2p^3$ (² D) $3d^1$	^{1}G	4	7 363 111.	$63\% + 35\% 2s^2 2p^3 (^2D) 3d^{1/3}G$
65	$2s^2 2p^3$ (² D) $3d^1$	^{3}P	2	7 370 636.	$28\% + 24\% 2s^2 2p^3 (^2D) 3d^{13}D + 15\% 2s^2 2p^3 (^2P) 3d^{13}P$
66	$2s^2 2p^3 (^2P) 3p^1$	^{1}S	0	7 376 410.	$76\% + 10\% 2s^2 2p^3 (^2D) 3p^{1/3}P$
67	$2s^2 2p^3$ (² D) $3d^1$	^{1}P	1	7 378 172.	$37\% + 23\% 2s^2 2p^3 (^2D) 3d^{13}D + 15\% 2s^2 2p^3 (^2P) 3d^{13}P$
68	$2s^2 2p^3$ (² D) $3d^1$	³ D	3	7 390 818.	$72\% + 14\% 2s^2 2p^3 (^4S) 3d^{1/3}D$
69	$2s^{1} 2p^{4} (^{4}P) 3s^{1}$	⁵ P	3	7 392 833.	96%
70	$2s^2 2p^3$ (² D) $3d^1$	³ P	0	7 393 753.	$73\% + 13\% 2s^2 2p^3 (^2D) 3d^{11}S + 12\% 2s^2 2p^3 (^2P) 3d^{13}P$
71	$2s^2 2p^3$ (² D) $3d^1$	³ D	2	7 398 129.	$42\% + 24\% 2s^2 2p^3$ (² D) $3d^{1}$ ³ P + 10% $2s^2 2p^3$ (² D) $3d^{1}$ ¹ D
72	$2s^2 2p^3$ (² D) $3d^1$	³ P	1	7 399 267.	$53\% + 14\% 2s^2 2p^3 (^2D) 3d^{1-1}P + 11\% 2s^2 2p^3 (^2D) 3d^{1-3}D$
73	$2s^2 2p^3$ (² D) $3d^1$	^{1}D	2	7 409 151.	$32\% + 26\% 2s^2 2p^3 (^2D) 3d^{1} {}^{3}P + 24\% 2s^2 2p^3 (^2P) 3d^{1} {}^{1}D$
74	$2s^2 2p^3$ (² D) $3d^1$	³ S	1	7 422 532.	$60\% + 26\% 2s^2 2p^3 (^2D) 3d^{1/3}P$
75	$2s^{1} 2p^{4} (^{4}P) 3s^{1}$	⁵ P	2	7 442 806.	$80\% + 16\% 2s^{1} 2p^{4} (^{4}P) 3s^{1} {}^{3}P$
76	$2s^2 2p^3$ (² D) $3d^1$	^{1}F	3	7 442 847.	$66\% + 18\% 2s^2 2p^3 (^2P) 3d^{1/3}D$
77	$2s^2 2p^3 (^2P) 3d^1$	³ F	2	7 456 495.	$63\% + 10\% 2s^2 2p^3 (^2D) 3d^{1-3}F$
78	$2s^2 2p^3 (^2P) 3d^1$	³ F	3	7 462 619.	$66\% + 17\% 2s^2 2p^3 (^2P) 3d^{1/3}D$
79	$2s^{1} 2p^{4} (^{4}P) 3s^{1}$	⁵ P	1	7 476 726.	94%
80	$2s^2 2p^3 (^2P) 3d^1$	³ D	2	7 478 825.	$32\% + 28\% 2s^2 2p^3 (^2P) 3d^{1} {}^{3}P + 18\% 2s^2 2p^3 (^2D) 3d^{1} {}^{1}D$
81	2s ² 2p ³ (² P) 3d ¹	^{3}D	1	7 497 246.	$34\% + 34\% 2s^2 2p^3 (^2P) 3d^{1/3}P$
82	2s ¹ 2p ⁴ (⁴ P) 3s ¹	^{3}P	2	7 499 065.	$76\% + 17\% 2s^{1} 2p^{4} (^{4}P) 3s^{1} {}^{5}P$
83	2s ² 2p ³ (² P) 3d ¹	${}^{3}F$	4	7 500 367.	$70\% + 13\% 2s^2 2p^3$ (² D) $3d^{13}G + 12\% 2s^2 2p^3$ (² D) $3d^{11}G$
84	2s ² 2p ³ (² P) 3d ¹	^{3}P	0	7 505 642.	$66\% + 21\% 2s^2 2p^3 (^2D) 3d^{1/3}P$
85	2s ² 2p ³ (² P) 3d ¹	^{3}P	2	7 515 848.	$30\% + 24\% 2s^2 2p^3 (^2P) 3d^{1} {}^1D + 17\% 2s^2 2p^3 (^2D) 3d^{1} {}^3P$
86	2s ² 2p ³ (² P) 3d ¹	^{3}D	1	7 522 780.	$35\% + 27\% 2s^2 2p^3 (^2P) 3d^{1} {}^{3}P + 13\% 2s^2 2p^3 (^2D) 3d^{1} {}^{3}S$
87	2s ² 2p ³ (² P) 3d ¹	^{3}D	3	7 538 090.	$39\% + 29\% 2s^2 2p^3 (^2P) 3d^{1-1}F$
88	$2s^1 2p^4 (^4P) 3s^1$	^{3}P	1	7 551 265.	90%
89	2s ² 2p ³ (² P) 3d ¹	$^{1}\mathrm{F}$	3	7 560 085.	$44\% + 22\% \ 2s^2 \ 2p^3 \ (^2D) \ 3d^{1-1}F + 11\% \ 2s^2 \ 2p^3 \ (^2P) \ 3d^{1-3}D$
90	$2s^2 2p^3 (^2P) 3d^1$	^{3}D	2	7 563 303.	$29\% + 26\% 2s^2 2p^3 (^2D) 3d^{1-1}D + 21\% 2s^2 2p^3 (^2P) 3d^{1-1}D$
91	$2s^1 2p^4$ (⁴ P) $3s^1$	^{3}P	0	7 571 511.	90%
92	$2s^2 \ 2p^3 \ (^2P) \ 3d^1$	$^{1}\mathbf{P}$	1	7 623 053.	69%
93	$2s^1 2p^4 (^4P) 3p^1$	⁵ P	3	7 626 093.	$70\% + 25\% 2s^1 2p^4 (^4P) 3p^{15}D$
94	2s ¹ 2p ⁴ (⁴ P) 3p ¹	⁵ P	2	7 627 441.	$68\% + 13\% 2s^1 2p^4 (^4P) 3p^{1-5}S$
95	2s ¹ 2p ⁴ (⁴ P) 3p ¹	⁵ D	4	7 659 203.	96%

V. Jonauskas et al.: Transition rates for Fe xix, Online Material p 4

Table 1. continued.

Index	Configuration	LS	J	$E ({\rm cm}^{-1})$	Composition
96	$2s^{1} 2p^{4} (^{4}P) 3p^{1}$	⁵ P	1	7 669 444.	79%
97	$2s^{1} 2p^{4} (^{4}P) 3p^{1}$	³ D	3	7 672 638.	$62\% + 18\% 2s^{1} 2p^{4} (^{4}P) 3p^{1} {}^{5}D + 16\% 2s^{1} 2p^{4} (^{4}P) 3p^{1} {}^{5}P$
98	$2s^{1} 2p^{4} (^{4}P) 3p^{1}$	⁵ D	2	7 704 931.	$58\% + 24\% 2s^{1} 2p^{4} (^{4}P) 3p^{1} ^{3}D$
99	$2s^{1} 2p^{4} (^{2}D) 3s^{1}$	³ D	1	7 706 424.	92%
100	$2s^{1} 2p^{4} (^{2}D) 3s^{1}$	³ D	2	7 709 743.	91%
101	$2s^{1} 2p^{4} (^{2}D) 3s^{1}$	³ D	3	7718580.	95%
102	$2s^{1} 2p^{4} (^{4}P) 3p^{1}$	⁵ D	1	7 719 659.	$68\% + 14\% 2s^1 2p^4 (^4P) 3p^{1/3}S$
103	$2s^{1} 2p^{4} (^{4}P) 3p^{1}$	⁵ D	0	7 722 890.	94%
104	$2s^{1} 2p^{4} (^{4}P) 3p^{1}$	³ S	1	7 724 278.	$46\% + 16\% 2s^1 2p^4 ({}^4P) 3p^{1} {}^5P + 16\% 2s^1 2p^4 ({}^4P) 3p^{1} {}^5D$
105	$2s^{1} 2p^{4} (^{4}P) 3p^{1}$	⁵ D	3	7 727 671.	$54\% + 32\% 2s^{1} 2p^{4} (^{4}P) 3p^{1} ^{3}D + 12\% 2s^{1} 2p^{4} (^{4}P) 3p^{1} ^{5}P$
106	$2s^{1} 2p^{4} (^{4}P) 3p^{1}$	³ P	2	7 733 587.	$40\% + 29\% 2s^{1} 2p^{4} (^{4}P) 3p^{1} ^{3}D + 21\% 2s^{1} 2p^{4} (^{4}P) 3p^{1} ^{5}D$
107	$2s^{1} 2p^{4} (^{4}P) 3p^{1}$	⁵ S	2	7 754 782.	$74\% + 19\% 2s^{1} 2p^{4} (^{4}P) 3p^{1} {}^{5}P$
108	$2s^{1} 2p^{4} (^{4}P) 3p^{1}$	^{3}P	0	7 772 950.	$74\% + 21\% 2s^{1} 2p^{4} (^{2}D) 3p^{1} {}^{3}P$
109	$2s^{1} 2p^{4} (^{2}D) 3s^{1}$	^{1}D	2	7 773 374.	91%
110	$2s^{1} 2p^{4} (^{4}P) 3p^{1}$	³ D	1	7 775 125.	$77\% + 11\% 2s^1 2p^4 (^4P) 3p^{1-3}S$
111	$2s^{1} 2p^{4} (^{4}P) 3p^{1}$	³ D	2	7 778 423.	$40\% + 39\% 2s^1 2p^4 (^4P) 3p^{1/3}P$
112	$2s^{1} 2p^{4} (^{4}P) 3p^{1}$	³ P	1	7 794 438.	$45\% + 22\% 2s^{1} 2p^{4} (^{4}P) 3p^{1} {}^{3}S + 13\% 2s^{1} 2p^{4} (^{4}P) 3p^{1} {}^{3}D$
113	$2s^{1} 2p^{4} (^{2}S) 3s^{1}$	³ S	1	7 862 062.	$74\% + 15\% 2s^1 2p^4 (^2P) 3s^{1-3}P$
114	$2s^{1} 2p^{4} (^{2}S) 3s^{1}$	1 S	0	7 897 457.	$57\% + 39\% 2s^{1} 2p^{4} (^{2}P) 3s^{1} {}^{3}P$
115	$2s^{1} 2p^{4} (^{4}P) 3d^{1}$	⁵ D	4	7 911 807.	$78\% + 19\% 2s^1 2p^4 (^4P) 3d^{1.5}F$
116	$2s^{1} 2p^{4} (^{4}P) 3d^{1}$	⁵ D	3	7 9123 63.	$78\% + 10\% 2s^1 2p^4 (^4P) 3d^{1-5}F$
117	$2s^{1} 2p^{4} (^{2}P) 3s^{1}$	^{3}P	2	7 914 328.	91%
118	2s ¹ 2p ⁴ (⁴ P) 3d ¹	⁵ D	2	7 919 866.	$74\% + 17\% 2s^1 2p^4 (^4P) 3d^{1-5}P$
119	2s ¹ 2p ⁴ (² P) 3s ¹	^{1}P	1	7 926 989.	$55\% + 38\% 2s^1 2p^4 (^2P) 3s^{1-3}P$
120	$2s^1 2p^4 (^4P) 3d^1$	⁵ D	1	7 932 071.	$67\% + 25\% 2s^1 2p^4 (^4P) 3d^{1-5}P$
121	$2s^1 2p^4 (^2D) 3p^1$	³ F	2	7 933 725.	90%
122	$2s^1 \; 2p^4 \; (^4P) \; 3d^1$	⁵ F	5	7 937 912.	97%
123	$2s^1 2p^4 (^2D) 3p^1$	^{1}P	1	7 940 286.	$50\% + 25\% 2s^1 2p^4 (^2D) 3p^{1-3}D$
124	$2s^1 2p^4 (^2D) 3p^1$	^{3}F	3	7 948 416.	90%
125	$2s^1 \ 2p^4 \ (^4P) \ 3d^1$	⁵ D	0	7 950 967.	90%
126	$2s^1 \; 2p^4 \; (^4P) \; 3d^1$	⁵ F	4	7 968 993.	$51\% + 36\% \ 2s^1 \ 2p^4 \ (^4P) \ 3d^1 \ ^3F + 10\% \ 2s^1 \ 2p^4 \ (^4P) \ 3d^1 \ ^5D$
127	$2s^1 2p^4 (^2D) 3p^1$	^{3}F	4	7 969 257.	96%
128	$2s^1 \ 2p^4 \ (^2D) \ 3p^1$	$^{1}\mathrm{F}$	3	7 972 616.	$75\% + 15\% 2s^1 2p^4 (^2D) 3p^{1-3}D$
129	$2s^1 2p^4 (^4P) 3d^1$	⁵ P	1	7 981 629.	$71\% + 21\% 2s^1 2p^4 (^4P) 3d^{15}D$
130	$2s^1 \ 2p^4 \ (^2D) \ 3p^1$	³ D	2	7 983 085.	83%
131	$2s^1 \; 2p^4 \; (^4P) \; 3d^1$	⁵ F	3	7 993 060.	$64\% + 16\% 2s^1 2p^4 (^4P) 3d^{1-3}F$
132	$2s^1 \ 2p^4 \ (^2D) \ 3p^1$	³ D	1	7 994 491.	$69\% + 19\% 2s^1 2p^4 (^2D) 3p^{1-1}P$
133	$2s^1 2p^4 (^4P) 3d^1$	⁵ P	2	7 998 742.	$61\% + 25\% 2s^1 2p^4 (^4P) 3d^{1-5}F$
134	$2s^1 2p^4 (^2D) 3p^1$	³ D	3	8 002 343.	$79\% + 17\% 2s^1 2p^4 (^2D) 3p^{1-1}F$
135	$2s^1 2p^4 (^2D) 3p^1$	^{1}D	2	8 007 594.	$64\% + 22\% 2s^1 2p^4 (^2D) 3p^{1/3}P$
136	$2s^1 2p^4 (^2P) 3s^1$	${}^{3}\mathbf{P}$	1	8 013 073.	$44\% + 35\% \ 2s^1 \ 2p^4 \ (^2P) \ 3s^{1-1}P + 18\% \ 2s^1 \ 2p^4 \ (^2S) \ 3s^{1-3}S$
137	$2s^1 2p^4 (^4P) 3d^1$	⁵ F	2	8 015 343.	$64\% + 16\% \ 2s^1 \ 2p^4 \ (^4P) \ 3d^1 \ ^5P + 15\% \ 2s^1 \ 2p^4 \ (^4P) \ 3d^1 \ ^5D$
138	$2s^1 2p^4 (^4P) 3d^1$	³ F	4	8 015 448.	$60\% + 27\% 2s^1 2p^4 (^4P) 3d^{1-5}F$
139	$2s^1 2p^4 (^4P) 3d^1$	⁵ F	1	8 019 137.	93%
140	$2s^1 2p^4 (^2D) 3p^1$	${}^{3}P$	1	8 021 480.	$55\% + 14\% \ 2s^1 \ 2p^4 \ (^2D) \ 3p^{1-1}P + 12\% \ 2s^1 \ 2p^4 \ (^4P) \ 3p^{1-3}P$
141	$2s^1 2p^4 (^2D) 3p^1$	${}^{3}\mathbf{P}$	2	8 024 170.	$58\% + 26\% \ 2s^1 \ 2p^4 \ (^2D) \ 3p^{1-1}D + 10\% \ 2s^1 \ 2p^4 \ (^4P) \ 3p^{1-3}P$
142	$2s^1 2p^4 (^4P) 3d^1$	⁵ P	3	8 025 361.	$48\% + 16\% \ 2s^1 \ 2p^4 \ (^4P) \ 3d^1 \ ^5F + 12\% \ 2s^1 \ 2p^4 \ (^4P) \ 3d^1 \ ^3D$

V. Jonauskas et al.: Transition rates for Fe xix, Online Material p 5

Table 1. continued.

Index	Configuration	LS	J	$E ({\rm cm}^{-1})$	Composition
143	2s ¹ 2p ⁴ (² D) 3p ¹	³ P	0	8 025 904.	$59\% + 19\% 2s^{1} 2p^{4} (^{2}P) 3p^{1} {}^{3}P + 18\% 2s^{1} 2p^{4} (^{4}P) 3p^{1} {}^{3}P$
144	2s ¹ 2p ⁴ (² P) 3s ¹	${}^{3}\mathbf{P}$	0	8 027 729.	$57\% + 36\% 2s^1 2p^4 (^2S) 3s^{1-1}S$
145	$2s^1 2p^4 (^4P) 3d^1$	³ F	3	8 036 088.	$48\% + 31\% 2s^1 2p^4 (^4P) 3d^{1-5}P$
146	$2s^1 2p^4 (^4P) 3d^1$	³ P	0	8 038 796.	77%
147	$2s^1 2p^4 (^4P) 3d^1$	³ P	1	8 043 511.	$65\% + 15\% 2s^1 2p^4 (^4P) 3d^{1-3}D$
148	$2s^1 2p^4 (^4P) 3d^1$	³ D	2	8 047 025.	$39\% + 24\% \ 2s^1 \ 2p^4 \ (^4P) \ 3d^{1 \ 3}F + 20\% \ 2s^1 \ 2p^4 \ (^4P) \ 3d^{1 \ 3}P$
149	$2s^1 \ 2p^4 \ (^4P) \ 3d^1$	³ F	2	8 080 045.	$66\% + 21\% 2s^1 2p^4 (^4P) 3d^{1-3}P$
150	$2s^1 \ 2p^4 \ (^4P) \ 3d^1$	³ D	1	8 088 509.	$64\% + 15\% \ 2s^1 \ 2p^4 \ (^4P) \ 3d^1 \ ^3P + 10\% \ 2s^1 \ 2p^4 \ (^2D) \ 3d^1 \ ^3D$
151	$2s^1 \ 2p^4 \ (^2S) \ 3p^1$	^{3}P	0	8 093 150.	$65\% + 20\% 2s^1 2p^4 (^2P) 3p^{1-3}P$
152	$2s^1 \ 2p^4 \ (^4P) \ 3d^1$	³ D	3	8 094 748.	$66\% + 23\% 2s^1 2p^4 (^4P) 3d^{1 3}F$
153	$2s^1 \ 2p^4 \ (^2S) \ 3p^1$	^{3}P	1	8 102 842.	$54\% + 19\% \ 2s^1 \ 2p^4 \ (^2P) \ 3p^{1 \ 3}D + 12\% \ 2s^1 \ 2p^4 \ (^2P) \ 3p^{1 \ 3}P$
154	$2s^1 \ 2p^4 \ (^4P) \ 3d^1$	^{3}P	2	8 113 545.	$47\% + 34\% 2s^1 2p^4 (^4P) 3d^{1 3}D$
155	$2s^1 2p^4 (^2S) 3p^1$	^{3}P	2	8 128 418.	62% + 30% 2s ¹ 2p ⁴ (² P) 3p ¹ ³ D
156	$2s^1 2p^4 (^2S) 3p^1$	^{1}P	1	8 138 461.	55% + 10% 2s ¹ 2p ⁴ (² P) 3p ¹ ³ P
157	$2s^1 \; 2p^4 \; (^2P) \; 3p^1$	${}^{3}\mathbf{P}$	2	8 148 713.	$40\% + 19\% 2s^1 2p^4 (^2P) 3p^{1\ 3}D + 19\% 2s^1 2p^4 (^2P) 3p^{1\ 1}D$
158	$2s^1 \; 2p^4 \; (^2P) \; 3p^1$	^{1}D	2	8 169 057.	$41\% + 38\% \ 2s^1 \ 2p^4 \ (^2P) \ 3p^1 \ ^3P + 11\% \ 2s^1 \ 2p^4 \ (^2P) \ 3p^1 \ ^3D$
159	$2s^1 \; 2p^4 \; (^2P) \; 3p^1$	^{3}D	3	8 171 239.	93%
160	$2s^1 \; 2p^4 \; (^2P) \; 3p^1$	${}^{3}\mathbf{P}$	1	8 185 333.	$36\% + 30\% \ 2s^1 \ 2p^4 \ (^2P) \ 3p^{1 \ 3}S + 12\% \ 2s^1 \ 2p^4 \ (^2S) \ 3p^{1 \ 3}P$
161	$2s^1 \; 2p^4 \; (^2P) \; 3p^1$	^{1}S	0	8 201 751.	$61\% + 22\% \ 2s^1 \ 2p^4 \ (^2P) \ 3p^1 \ ^3P + 12\% \ 2s^1 \ 2p^4 \ (^2D) \ 3p^1 \ ^3P$
162	$2s^1 \; 2p^4 \; (^2P) \; 3p^1$	^{3}D	1	8 223 121.	$52\% + 21\% \ 2s^1 \ 2p^4 \ (^2P) \ 3p^{1 \ 3}S + 10\% \ 2s^1 \ 2p^4 \ (^2S) \ 3p^{1 \ 3}P$
163	$2s^1 \ 2p^4 \ (^2D) \ 3d^1$	$^{3}\mathrm{G}$	3	8 225 367.	94%
164	$2s^1 2p^4 (^2D) 3d^1$	$^{3}\mathrm{G}$	4	8 231 612.	94%
165	$2s^1 \ 2p^4 \ (^2D) \ 3d^1$	$^{3}\mathrm{G}$	5	8 240 957.	97%
166	$2s^1 2p^4 (^2D) 3d^1$	${}^{3}F$	2	8 262 760.	85%
167	$2s^1 \; 2p^4 \; (^2P) \; 3p^1$	^{3}P	0	8 264 410.	$36\% + 30\% \ 2s^1 \ 2p^4 \ (^2P) \ 3p^{1-1}S + 26\% \ 2s^1 \ 2p^4 \ (^2S) \ 3p^{1-3}P$
168	$2s^1 \; 2p^4 \; (^2P) \; 3p^1$	^{3}D	2	8 268 400.	$36\% + 34\% \ 2s^1 \ 2p^4 \ (^2P) \ 3p^{1-1}D + 21\% \ 2s^1 \ 2p^4 \ (^2S) \ 3p^{1-3}P$
169	$2s^1 \; 2p^4 \; (^2D) \; 3d^1$	^{3}S	1	8 270 258.	$68\% + 13\% 2s^1 2p^4 (^2D) 3d^{1-3}D$
170	$2s^1 2p^4 (^2D) 3d^1$	${}^{3}F$	3	8 270 468.	88%
171	$2s^1 \; 2p^4 \; (^2P) \; 3p^1$	^{3}S	1	8 271 581.	$34\% + 24\% \ 2s^1 \ 2p^4 \ (^2S) \ 3p^{1-1}P + 21\% \ 2s^1 \ 2p^4 \ (^2P) \ 3p^{1-3}P$
172	$2s^1 2p^4 (^2D) 3d^1$	${}^{3}F$	4	8 274 216.	$60\% + 34\% 2s^1 2p^4 (^2D) 3d^{1-1}G$
173	$2s^1 2p^4 (^2D) 3d^1$	³ D	1	8 275 567.	$30\% + 26\% \ 2s^1 \ 2p^4 \ (^2D) \ 3d^1 \ ^3S + 20\% \ 2s^1 \ 2p^4 \ (^2D) \ 3d^1 \ ^1P$
174	$2s^1 \; 2p^4 \; (^2D) \; 3d^1$	³ P	0	8 278 378.	$64\% + 19\% 2s^1 2p^4 (^2D) 3d^{1-1}S$
175	$2s^1 2p^4 (^2D) 3d^1$	³ D	2	8 283 769.	75%
176	$2s^1 2p^4 (^2D) 3d^1$	$^{1}\mathrm{G}$	4	8 288 800.	$60\% + 36\% 2s^1 2p^4 (^2D) 3d^{1-3}F$
177	$2s^1 2p^4 (^2D) 3d^1$	³ D	3	8 290 292.	85%
178	$2s^1 2p^4 (^2D) 3d^1$	³ P	2	8 291 566.	84%
179	$2s^1 2p^4 (^2D) 3d^1$	^{3}P	1	8 296 912.	$70\% + 11\% 2s^1 2p^4 (^4P) 3d^{1 3}P$
180	$2s^1 2p^4 (^2D) 3d^1$	^{1}P	1	8 317 743.	$57\% + 26\% 2s^1 2p^4 (^2D) 3d^{1-3}D$
181	$2s^1 2p^4 (^2D) 3d^1$	^{1}D	2	8 317 945.	69%
182	$2s^1 2p^4 (^2D) 3d^1$	${}^{1}F$	3	8 322 491.	88%
183	$2s^1 2p^4 (^2D) 3d^1$	^{1}S	0	8 339 870.	$75\% + 16\% 2s^1 2p^4 (^2D) 3d^{1-3}P$
184	$2s^1 \ 2p^4 \ (^2P) \ 3p^1$	^{1}P	1	8 346 455.	75%
185	$2s^1 2p^4 (^2S) 3d^1$	³ D	1	8 401 771.	$58\% + 30\% 2s^1 2p^4 (^2P) 3d^{1-3}D$
186	$2s^1 \ 2p^4 \ (^2S) \ 3d^1$	³ D	2	8 408 479.	$63\% + 14\% \ 2s^1 \ 2p^4 \ (^2P) \ 3d^1 \ ^3D + 11\% \ 2s^1 \ 2p^4 \ (^2P) \ 3d^1 \ ^3F$

V. Jonauskas et al.: Transition rates for Fe xix, Online Material p 6

Table 1. continued.

Index	Configuration	LS	J	<i>E</i> (cm ⁻¹)	Composition
187	$2s^{1} 2p^{4} (^{2}S) 3d^{1}$	³ D	3	8 411 526.	72%
188	$2s^{1} 2p^{4} (^{2}P) 3d^{1}$	³ D	3	8 436 181	$74\% + 12\% 2s^1 2p^4 (^2P) 3d^{1} {}^3F$
189	$2s^{1} 2p^{4} (^{2}S) 3d^{1}$	^{1}D	2	8 438 486.	$49\% + 18\% 2s^{1} 2p^{4} (^{2}P) 3d^{1} {}^{3}D + 14\% 2s^{1} 2p^{4} (^{2}P) 3d^{1} {}^{3}F$
190	$2s^{1} 2p^{4} (^{2}P) 3d^{1}$	³ D	2	8 451 365.	$42\% + 31\% 2s^{1} 2p^{4} (^{2}P) 3d^{1} ^{3}P$
191	$2s^{1} 2p^{4} (^{2}P) 3d^{1}$	¹ F	3	8 461 874.	$56\% + 38\% 2s^1 2p^4 (^2P) 3d^{1-3}F$
192	$2s^{1} 2p^{4} (^{2}P) 3d^{1}$	³ F	4	8 463 253.	94%
193	$2s^{1} 2p^{4} (^{2}P) 3d^{1}$	³ P	1	8 469 720.	$46\% + 31\% 2s^{1} 2p^{4} (^{2}P) 3d^{1} {}^{3}D + 11\% 2s^{1} 2p^{4} (^{2}S) 3d^{1} {}^{3}D$
194	$2s^{1} 2p^{4} (^{2}P) 3d^{1}$	³ P	0	8 485 157.	88%
195	$2s^{1} 2p^{4} (^{2}P) 3d^{1}$	³ P	1	8 503 809.	$37\% + 23\% 2s^1 2p^4 (^2P) 3d^{1}P + 19\% 2s^1 2p^4 (^2P) 3d^{1}^3D$
196	$2s^{1} 2p^{4} (^{2}P) 3d^{1}$	³ F	2	8 508 027.	$43\% + 23\% 2s^{1} 2p^{4} (^{2}P) 3d^{1} D + 17\% 2s^{1} 2p^{4} (^{2}P) 3d^{1} P$
197	$2s^{1} 2p^{4} (^{2}P) 3d^{1}$	³ F	3	8 553 132.	$37\% + 33\% 2s^{1} 2p^{4} (^{2}P) 3d^{1} {}^{1}F + 20\% 2s^{1} 2p^{4} (^{2}S) 3d^{1} {}^{3}D$
198	$2s^{1} 2p^{4} (^{2}P) 3d^{1}$	³ P	2	8 566 696.	$37\% + 26\% 2s^{1} 2p^{4} (^{2}S) 3d^{1} D + 14\% 2s^{1} 2p^{4} (^{2}P) 3d^{1} D$
199	$2s^{1} 2p^{4} (^{2}P) 3d^{1}$	¹ P	1	8 591 981.	$63\% + 12\% 2s^{1} 2p^{4} (^{2}S) 3d^{1} {}^{3}D$
200	$2s^{1} 2p^{4} (^{2}P) 3d^{1}$	^{1}D	2	8 606 433.	$57\% + 15\% 2s^{1} 2p^{4} (^{2}P) 3d^{1} {}^{3}F + 11\% 2s^{1} 2p^{4} (^{2}S) 3d^{1} {}^{1}D$
201	$2p^5 3s^1$	${}^{3}\mathbf{P}$	2	8 671 622.	95%
202	$2p^5 3s^1$	${}^{3}\mathbf{P}$	1	8 692 816.	$49\% + 46\% 2p^5 3s^{1-1}P$
203	$2p^5 3s^1$	${}^{3}\mathbf{P}$	0	8 776 738.	96%
204	$2p^5 3s^1$	$^{1}\mathbf{P}$	1	8 792 690.	$48\% + 47\% 2p^5 3s^{1/3}P$
205	$2p^5 3p^1$	³ S	1	8 864 540.	$80\% + 16\% 2p^5 3p^{1/3}P$
206	$2p^5 3p^1$	^{3}D	2	8 895 588.	$58\% + 27\% 2p^5 3p^{1-1}D + 11\% 2p^5 3p^{1-3}P$
207	2p ⁵ 3p ¹	³ D	3	8 909 009.	96%
208	2p ⁵ 3p ¹	^{1}P	1	8 920 712.	$47\% + 27\% 2p^5 3p^{1/3}D + 18\% 2p^5 3p^{1/3}P$
209	2p ⁵ 3p ¹	^{3}P	2	8 938 448.	$64\% + 31\% 2p^5 3p^{1-1}D$
210	$2p^5 3p^1$	${}^{3}\mathbf{P}$	0	8 985 996.	92%
211	$2s^2 \ 2p^3 \ (^4S) \ 4s^1$	⁵ S	2	8 991 312.	90%
212	2p ⁵ 3p ¹	³ D	1	8 996 265.	$63\% + 32\% 2p^5 3p^{1-1}P$
213	$2s^2 2p^3 (^4S) 4s^1$	^{3}S	1	9 009 157.	89%
214	2p ⁵ 3p ¹	³ P	1	9 027 898.	$61\% + 17\% 2p^5 3p^{1-1}P + 12\% 2p^5 3p^{1-3}S$
215	2p ⁵ 3p ¹	³ D	2	9 030 110.	$38\% + 37\% \ 2p^5 \ 3p^{1-1}D + 21\% \ 2p^5 \ 3p^{1-3}P$
216	$2s^2 \; 2p^3 \; (^4S) \; 4p^1$	⁵ P	1	9 088 194.	88%
217	$2s^2 \; 2p^3 \; (^4S) \; 4p^1$	⁵ P	2	9 089 818.	81%
218	$2s^2 \; 2p^3 \; (^4S) \; 4p^1$	⁵ P	3	9 097 647.	91%
219	$2s^2 \; 2p^3 \; (^4S) \; 4p^1$	^{3}P	1	9 115 464.	80%
220	$2s^2 \; 2p^3 \; (^4S) \; 4p^1$	${}^{3}\mathbf{P}$	2	9 123 469.	79%
221	$2s^2 \; 2p^3 \; (^4S) \; 4p^1$	^{3}P	0	9 127 683.	92%
222	$2s^2 \; 2p^3 \; (^2D) \; 4s^1$	^{3}D	1	9 141 821.	79%
223	$2s^2 \ 2p^3 \ (^2D) \ 4s^1$	^{3}D	2	9 142 211.	$56\% + 22\% \ 2s^2 \ 2p^3 \ (^2D) \ 4s^{1 \ 1}D + 16\% \ 2s^2 \ 2p^3 \ (^2P) \ 4s^{1 \ 3}P$
224	$2p^5 3d^1$	${}^{3}\mathbf{P}$	0	9 154 400.	97%
225	$2p^5 3d^1$	${}^{3}\mathbf{P}$	1	9 163 141.	90%
226	$2s^2 \ 2p^3 \ (^2D) \ 4s^1$	^{3}D	3	9 173 229.	99%
227	$2p^5 3d^1$	${}^{3}F$	4	9 177 518.	97%
228	$2s^2 \; 2p^3 \; (^2D) \; 4s^1$	^{1}D	2	9 179 643.	$68\% + 31\% \ 2s^2 \ 2p^3 \ (^2D) \ 4s^1 \ ^3D$
229	$2p^5 3d^1$	${}^{3}\mathbf{P}$	2	9 180 218.	$72\% + 17\% 2p^5 3d^{1-3}D$
230	$2p^5 3d^1$	${}^{3}F$	3	9 184 859.	$66\% + 26\% 2p^5 3d^{1} F$
231	$2p^5 3p^1$	^{1}S	0	9 188 407.	92%
232	$2s^2 \; 2p^3 \; (^4S) \; 4d^1$	⁵ D	2	92 02 980.	88%
233	$2p^5 3d^1$	^{3}F	2	9 203 382.	$38\% + 37\% \ 2p^5 \ 3d^{1-1}D + 21\% \ 2p^5 \ 3d^{1-3}D$

V. Jonauskas et al.: Transition rates for Fe xix, Online Material p 7

Table 1. continued.

Index	Configuration	LS	J	$E ({\rm cm}^{-1})$	Composition
234	$\frac{2}{2s^2 2p^3 (^4S) 4d^1}$	⁵ D	0	9 203 794.	91%
235	$2s^2 2p^3 (^4S) 4d^1$	⁵ D	3	9 203 813.	87%
236	$2s^2 2p^3 (^4S) 4d^1$	⁵ D	1	9 203 899.	91%
237	$2s^2 2p^3 (^4S) 4d^1$	⁵ D	4	9 205 171.	91%
238	$2p^5 3d^1$	^{3}D	3	9 214 490.	$59\% + 33\% 2p^5 3d^{11}F$
239	$2s^2 2p^3 ({}^4S) 4d^1$	^{3}D	2	9 229 318.	80%
240	$2s^2 2p^3 (^2D) 4p^1$	³ D	1	9 230 606.	$50\% + 24\% 2s^2 2p^3 (^2D) 4p^{1-1}P$
241	$2s^2 2p^3 (^4S) 4d^1$	³ D	1	9 236 651.	89%
242	$2s^2 2p^3 (^4S) 4d^1$	³ D	3	9 238 888.	82%
243	$2s^2 2p^3 (^2D) 4p^1$	³ F	2	9 2 39 7 40.	73%
244	$2s^2 2p^3 (^2D) 4p^1$	³ F	3	9 248 145.	$51\% + 26\% 2s^2 2p^3 (^2D) 4p^{1}F + 16\% 2s^2 2p^3 (^2P) 4p^{1}D$
245	$2s^2 2p^3 (^2D) 4p^1$	³ D	2	9 248 932.	75%
246	$2p^5 3d^1$	³ D	1	9 260 898.	$80\% + 11\% 2p^5 3d^{1}P$
247	$2s^2 2p^3 (^2D) 4p^1$	$^{1}\mathbf{P}$	1	9 261 508.	$36\% + 29\% 2s^2 2p^3 (^2D) 4p^{13}D + 16\% 2s^2 2p^3 (^2D) 4p^{13}P$
248	$2s^2 2p^3 (^2D) 4p^1$	³ P	0	9 265 613.	82%
249	$2s^2 2p^3 (^2D) 4p^1$	^{3}D	3	9 268 630.	$51\% + 25\% 2s^2 2p^3 (^2D) 4p^{1} {}^3F + 22\% 2s^2 2p^3 (^2D) 4p^{1} {}^1F$
250	$2s^2 2p^3 (^4S) 4f^1$	⁵ F	3	9 271 251.	82%
251	$2s^2 2p^3 (^4S) 4f^1$	⁵ F	4	9 271 282.	85%
252	$2s^2 2p^3 (^4S) 4f^1$	⁵ F	2	9 271 482.	87%
253	$2s^2 2p^3 (^4S) 4f^1$	⁵ F	1	9 271 849.	91%
254	$2s^2 2p^3 (^4S) 4f^1$	⁵ F	5	9 271 973.	90%
255	$2s^2 2p^3 (^4S) 4f^1$	³ F	3	9 273 855.	81%
256	$2s^2 2p^3 (^4S) 4f^1$	³ F	4	9 273 866.	84%
257	$2s^2 2p^3 (^4S) 4f^1$	³ F	2	9 274 963.	87%
258	$2s^2 2p^3 (^2D) 4p^1$	³ D	3	9 278 913.	$44\% + 43\% 2s^2 2p^3 (^2D) 4p^{1} {}^1F + 12\% 2s^2 2p^3 (^2D) 4p^{1} {}^3F$
259	$2s^2 2p^3 (^2D) 4p^1$	³ F	4	9 279 919.	99%
260	$2s^2 2p^3 (^2P) 4s^1$	³ P	0	9 281 924.	99%
261	$2s^2 2p^3 (^2P) 4s^1$	${}^{3}\mathbf{P}$	1	9 284736.	$70\% + 28\% 2s^2 2p^3 (^2P) 4s^{1-1}P$
262	2s ² 2p ³ (² D) 4p ¹	${}^{3}\mathbf{P}$	1	9 289 554.	$58\% + 30\% 2s^2 2p^3 (^2D) 4p^{1} P$
263	$2p^5 3d^1$	${}^{3}F$	2	9 291 760.	$58\% + 29\% 2p^5 3d^{1-1}D + 11\% 2p^5 3d^{1-3}D$
264	2s ² 2p ³ (² D) 4p ¹	^{3}P	2	9 292 210.	78%
265	2p ⁵ 3d ¹	³ D	2	9 303 353.	$48\% + 25\% 2p^5 3d^{1 3}P + 24\% 2p^5 3d^{1 1}D$
266	$2p^5 3d^1$	${}^{1}\mathrm{F}$	3	9 306 188.	$37\% + 31\% 2p^5 3d^{1\ 3}D + 30\% 2p^5 3d^{1\ 3}F$
267	$2s^2 \ 2p^3 \ (^2D) \ 4p^1$	^{1}D	2	9 317 200.	$71\% + 14\% 2s^2 2p^3 (^2D) 4p^{1} {}^{3}P$
268	$2s^2 \ 2p^3 \ (^2P) \ 4s^1$	$^{3}\mathbf{P}$	2	9 339 579.	$73\% + 11\% 2s^2 2p^3 (^2D) 4s^{1-3}D$
269	$2s^2 \ 2p^3 \ (^2P) \ 4s^1$	$^{1}\mathbf{P}$	1	9 344 672.	$53\% + 19\% 2s^2 2p^3 (^2P) 4s^{1} {}^{3}P + 17\% 2s^2 2p^3 (^2D) 4s^{1} {}^{3}D$
270	$2s^2 \; 2p^3 \; (^2D) \; 4d^1$	${}^{3}F$	2	9 350 980.	71%
271	$2s^2 \; 2p^3 \; (^2D) \; 4d^1$	^{3}G	3	9 355 292.	$54\% + 21\% 2s^2 2p^3 (^2D) 4d^{13}F$
272	$2s^2 \; 2p^3 \; (^2D) \; 4d^1$	^{3}G	4	9 356 568.	$46\% + 29\% \ 2s^2 \ 2p^3 \ (^2D) \ 4d^{1 \ 1}G + 16\% \ 2s^2 \ 2p^3 \ (^2P) \ 4d^{1 \ 3}F$
273	$2s^2 \; 2p^3 \; (^2D) \; 4d^1$	³ D	1	9 356 728.	$56\% + 17\% 2s^2 2p^3 (^2D) 4d^{1-1}P$
274	$2s^2 \ 2p^3 \ (^2D) \ 4d^1$	^{1}S	0	9 357 756.	$61\% + 20\% \ 2s^2 \ 2p^3 \ (^2D) \ 4d^1 \ ^3P + 14\% \ 2s^2 \ 2p^3 \ (^2P) \ 4d^1 \ ^3P$
275	$2s^2 \ 2p^3 \ (^2D) \ 4d^1$	${}^{3}F$	3	9 358 080.	$44\% + 23\% 2s^2 2p^3 (^2D) 4d^{1} {}^3G$
276	$2s^2 \; 2p^3 \; (^2D) \; 4d^1$	³ D	2	9 372 251.	$47\% + 21\% 2s^2 2p^3 (^2D) 4d^{1 3}P$
277	$2s^2 \; 2p^3 \; (^2D) \; 4d^1$	³ P	1	9 377 227.	$33\% + 26\% \ 2s^2 \ 2p^3 \ (^2D) \ 4d^{1 \ 3}S + 17\% \ 2s^2 \ 2p^3 \ (^2D) \ 4d^{1 \ 1}P$
278	$2s^2 \; 2p^3 \; (^2P) \; 4p^1$	³ D	1	9 377 502.	$72\% + 24\% 2s^2 2p^3 (^2P) 4p^{1-1}P$
279	$2s^2 \; 2p^3 \; (^2D) \; 4d^1$	${}^{3}F$	4	9 383 888.	$88\% + 11\% 2s^2 2p^3 (^2D) 4d^{1/3}G$
280	$2s^2 \; 2p^3 \; (^2D) \; 4d^1$	³ G	5	9 387 834.	100%
281	$2s^2 \ 2p^3 \ (^2D) \ 4d^1$	$^{1}\mathrm{G}$	4	9 388 039.	$61\% + 32\% 2s^2 2p^3 (^2D) 4d^{13}G$

Table 1. continued.

Index	Configuration	LS	J	$E ({\rm cm}^{-1})$	Composition
282	2s ² 2p ³ (² D) 4d ¹	³ D	3	9 391 730.	$74\% + 21\% 2s^2 2p^3 (^2D) 4d^{1} {}^3F$
283	$2s^2 2p^3 (^2P) 4p^1$	³ P	1	9 393 312.	$42\% + 34\% 2s^2 2p^3 (^2P) 4p^{1\ 3}S + 13\% 2s^2 2p^3 (^2P) 4p^{1\ 1}P$
284	$2s^2 2p^3 (^2P) 4p^1$	³ D	2	9 394 935.	$66\% + 19\% 2s^2 2p^3 (^2P) 4p^{1-1}D + 13\% 2s^2 2p^3 (^2P) 4p^{1-3}P$
285	2s ² 2p ³ (² D) 4d ¹	${}^{3}P$	0	9 39 6437.	$66\% + 31\% 2s^2 2p^3 (^2D) 4d^{1-1}S$
286	$2s^2 2p^3 (^2D) 4d^1$	^{3}P	2	9 399 298.	$45\% + 40\% 2s^2 2p^3 (^2D) 4d^{13}D$
287	$2s^2 2p^3 (^2D) 4d^1$	^{1}P	1	9 399 609.	$43\% + 27\% \ 2s^2 \ 2p^3 \ (^2D) \ 4d^{1 \ 3}P + 26\% \ 2s^2 \ 2p^3 \ (^2D) \ 4d^{1 \ 3}D$
288	2p ⁵ 3d ¹	^{1}P	1	9403676.	77%
289	$2s^2 \ 2p^3 \ (^2P) \ 4p^1$	^{3}P	0	9 405 849.	$78\% + 18\% 2s^2 2p^3 (^2P) 4p^{1-1}S$
290	2s ² 2p ³ (² D) 4d ¹	${}^{3}S$	1	9 409 036.	$55\% + 27\% 2s^2 2p^3 (^2D) 4d^{1-3}P$
291	$2s^2 \; 2p^3 \; (^2D) \; 4f^1$	$^{3}\mathrm{G}$	3	9 412 969.	$59\% + 11\% 2s^2 2p^3 (^2D) 4f^{1-1}F$
292	2s ² 2p ³ (² D) 4d ¹	^{1}D	2	9 413 570.	$67\% + 22\% 2s^2 2p^3 (^2D) 4d^{1-3}P$
293	2s ² 2p ³ (² D) 4f ¹	^{3}G	4	9414125.	$33\% + 24\% 2s^2 2p^3 (^2D) 4f^{1\ 1}G + 20\% 2s^2 2p^3 (^2D) 4f^{1\ 3}F$
294	2s ² 2p ³ (² D) 4f ¹	³ F	2	9416210.	$43\% + 22\% 2s^2 2p^3 (^2D) 4f^{1\ 1}D + 13\% 2s^2 2p^3 (^2D) 4f^{1\ 3}D$
295	$2s^2 2p^3 (^2D) 4f^1$	^{3}H	4	9416321.	74%
296	2s ² 2p ³ (² D) 4f ¹	^{3}H	5	9417075.	$41\% + 33\% 2s^2 2p^3 (^{2}D) 4f^{1} H + 15\% 2s^2 2p^3 (^{2}P) 4f^{1} G^{3}G$
297	$2s^2 2p^3 (^2D) 4f^1$	³ D	3	9 417 559.	$37\% + 25\% 2s^2 2p^3 (^2D) 4f^{1}{}^{3}F + 15\% 2s^2 2p^3 (^2D) 4f^{1}{}^{1}F$
298	$2s^2 2p^3 (^2D) 4d^1$	^{1}F	3	9 418 360.	79%
299	$2s^2 2p^3 (^2D) 4f^1$	^{1}P	1	9 422 031.	$37\% + 26\% 2s^2 2p^3 (^2D) 4f^{1\ 3}D + 17\% 2s^2 2p^3 (^2D) 4f^{1\ 3}P$
300	$2s^2 2p^3 (^2D) 4f^1$	^{3}P	2	9 423 555.	$54\% + 17\% 2s^2 2p^3 (^2D) 4f^{1 3}D$
301	$2s^2 2p^3 (^2P) 4p^1$	^{3}S	1	9439881.	$45\% + 19\% 2s^2 2p^3 (^2P) 4p^{1} {}^{3}P + 17\% 2s^2 2p^3 (^2D) 4p^{1} {}^{3}P$
302	$2s^2 2p^3 (^2P) 4p^1$	³ D	3	9 444 216.	$75\% + 10\% 2s^2 2p^3 (^2D) 4p^{1/3}F$
303	$2s^2 2p^3 (^2D) 4f^1$	$^{1}\mathrm{H}$	5	9 448 108.	$49\% + 48\% 2s^2 2p^3 (^2D) 4f^{1 3}H$
304	$2s^2 2p^3 (^2D) 4f^1$	^{3}H	6	9 448 931.	100%
305	$2s^2 2p^3 (^2D) 4f^1$	³ G	4	9 449 669	$53\% + 26\% 2s^2 2p^3 (^2D) 4f^{1}{}^{3}F + 16\% 2s^2 2p^3 (^2D) 4f^{1}{}^{1}G$
306	$2s^{2} 2p^{3} (^{2}D) 4f^{1}$	³ G	5	9 449 826.	90%
307	$2s^2 2p^3 (^2P) 4p^1$	^{1}P	1	9450324	$30\% + 23\% 2s^2 2n^3 (^2P) 4n^{13}P + 13\% 2s^2 2n^3 (^2D) 4n^{13}D$
308	$2s^{2} 2p^{3} (^{2}D) 4f^{1}$	³ F	3	9450595	$54\% + 19\% 2s^2 2p^3 (^2D) 4f^{1/3}G + 15\% 2s^2 2p^3 (^2D) 4f^{1/1}F$
309	$2s^{2} 2p^{3} (2D) 4f^{1}$	³ F	2	9451023	$31\% + 25\% 2s^2 2p^3 (^2D) 4f^{-3}D + 15\% 2s^2 2p^3 (^2P) 4p^{-1}D$
310	$2s^{2} 2p^{3} (2D) 4f^{1}$	^{1}G	4	9451772	$49\% + 48\% 2s^2 2p^3 (^2D) 4f^{-3}F$
311	$2s^{2} 2p^{3} (^{2}P) 4n^{1}$		2	9 452 986	$34\% + 28\% 2s^2 2p^3 (^2D) 4f^{13}D + 11\% 2s^2 2p^3 (^2D) 4f^{13}P$
312	$2s^{2} 2p^{3} (^{2}D) 4f^{1}$	³ D	1	9453065	$56\% + 16\% 2s^{2} 2p^{3} (^{2}D) 4f^{1} P + 11\% 2s^{2} 2p^{3} (^{2}D) 4f^{1} P$
313	$2s^{2} 2p^{3} (D) 4f^{1}$	¹ F	3	9453134	$50\% + 10\% 2s^{2} 2p^{2}$ (D) $41^{-1} + 11\% 2s^{-2} 2p^{-1}$ (D) 41^{-1}
314	$2s^{2} 2p^{3} (D) H^{2}$ $2s^{2} 2p^{3} (D) 4f^{1}$	3p	0	9453411	100%
315	$2s^{2} 2p^{3} (^{2}D) 4f^{1}$		2	9453744	$44\% + 18\% 2s^2 2n^3 (^2D) 4f^{1/3}P$
316	$2s^{2} 2p^{3} (D) 4f^{1}$	3p	1	9 453 907	$62\% + 37\% 2s^2 2p^3 (^2D) 4f^{-1}P$
317	$2s^2 2p^3 (^2P) 4n^1$	3 D	2	9 455 707. 9 456 194	$56\% \pm 11\% 2s^2 2p^3 (^2P) 4p^{11}D$
318	$2s^2 2p^3 (^2P) 4d^1$	3E	2	9 4 50 1 9 4 . 0 105 736	$36\% + 11\% 2s^{2} 2p^{2} (1) + p^{2} D$ $76\% + 18\% 2s^{2} 2n^{3} (^{2}P) 4d^{1} D$
310	$2s^2 2p^3 (^2P) 4p^1$	1 S	0	0 501 661	$60\% + 15\% 2s^2 2p^3 (^2D) 4n^{13}P$
320	$2s^2 2p^3 (^2P) 4d^1$	3D	2	9 501 001.	$45\% + 35\% 2s^2 2p^3 (^2P) 4d^{13}P + 16\% 2s^2 2p^3 (^2P) 4d^{11}P$
320 221	$2s^{2} 2p^{3} (^{2}P) 4d^{1}$	г 3г	2	9 503 492.	$45\% + 55\% 2s^{2} 2p^{2} (r) 4u^{-1} D + 10\% 2s^{-2} 2p^{3} (2p) 4d^{-1} F$
222	$2s^2 2p^3 (2p) 4d^1$	г 3р	3	9504570.	$58\% + 22\% 28^{-2} 2p^{-2} (r) 4u^{-1} D + 19\% 28^{-2} 2p^{-3} (2p) 4d^{-1} P$
322	$28 2p (P) 4d^{2}$ $2s^{2} 2r^{3} (2p) 4d^{1}$	л 3г	1	9 551 757	$57.0 \pm 20\% 28^{-2} 2p^{-3} (2p) 4d^{-3} C$
323 204	$28 2p (P) 4d^{-1}$	г 3р	4	9 JJ1 2J3. 0 552 696	$76\% + 12\% 2s^2 2r^3 (^2D) 4d^{13}D$
324 225	$2s^{2} 2p^{3} (^{2}P) 4d^{4}$	-г 3р	0	9 JJJ 020.	$10\% + 15\% 28^{-2} 2p^{-2} (D) 40^{-2} P$
323 206	$2s^{2} 2p^{3} (^{2}P) 4d^{4}$	-г 3р	ے 1	9 330 213.	$5570 + 5170 28 2p^{-}(P) 4d^{-1}D$ $5770 + 1607 2a^{2} 2m^{3} (2D) 4d^{-3}D$
320 227	$2s^{-} 2p^{-} (^{2}P) 4d^{1}$	-P 30	1	9 557 201.	$3/\% + 10\% 2s^{-} 2p^{-} (-r) 4d^{-r} D$ $70\% + 18\% 2s^{2} 2r^{3} (2p) 4f^{-1} T$
321 229	$2s^{-} 2p^{-} (^{-}P) 4f^{+}$	-G 30	5	9 338 072.	$12\% + 18\% 25^{\circ} 2p^{\circ} (^{-}P) 41^{\circ} ^{-}P$
328 220	$2s^{2} 2p^{2} (^{2}P) 4f^{1}$	30 31	4	9 2292 /3.	$41\% + 51\% 2s^{2} 2p^{3} (^{2}P) 4t^{4} G + 28\% 2s^{2} 2p^{3} (^{2}P) 4t^{4} F$
329	2s ² 2p ³ (² P) 4f ¹	۶F	2	9 560 171.	$51\% + 29\% 2s^2 2p^3 (^2P) 4t^{-1}D + 20\% 2s^2 2p^3 (^2P) 4t^{-3}D$

V. Jonauskas et al.:	Transition	rates for Fe xix,	On	line I	Materia	ıl j	99)
----------------------	------------	-------------------	----	--------	---------	------	----	---

Table 1. continued.

Index	Configuration	LS	J	$E ({\rm cm}^{-1})$	Composition
330	$2s^2 2p^3$ (² P) 4f ¹	³ D	3	9 560 383.	$49\% + 31\% \ 2s^2 \ 2p^3 \ (^2P) \ 4f^{1 \ 3}F + 19\% \ 2s^2 \ 2p^3 \ (^2P) \ 4f^{1 \ 1}F$
331	$2s^2 \ 2p^3 \ (^2P) \ 4d^1$	³ D	3	9 565 122.	$57\% + 13\% 2s^2 2p^3 (^2P) 4d^{1-1}F$
332	$2s^2 \ 2p^3 \ (^2P) \ 4d^1$	$^{1}\mathrm{F}$	3	9 566 948.	$54\% + 21\% \ 2s^2 \ 2p^3 \ (^2P) \ 4d^{1 \ 3}F + 14\% \ 2s^2 \ 2p^3 \ (^2D) \ 4d^{1 \ 3}G$
333	$2s^2 \ 2p^3 \ (^2P) \ 4d^1$	^{3}D	2	9 569 160.	$39\% + 19\% 2s^2 2p^3 (^2P) 4d^{1 \ 1}D + 12\% 2s^2 2p^3 (^2P) 4d^{1 \ 3}F$
334	$2s^2 2p^3 (^2P) 4d^1$	^{1}P	1	9 593 316.	$63\% + 14\% 2s^2 2p^3 (^2P) 4d^{1-3}D$
335	2s ² 2p ³ (² P) 4f ¹	^{3}D	1	9614101.	77%
336	2s ² 2p ³ (² P) 4f ¹	$^{1}\mathrm{G}$	4	9614622.	$41\% + 36\% 2s^2 2p^3 (^2P) 4f^{1} {}^3G + 17\% 2s^2 2p^3 (^2D) 4f^{1} {}^3H$
337	2s ² 2p ³ (² P) 4f ¹	³ G	5	9614681.	77%
338	2s ² 2p ³ (² P) 4f ¹	³ D	2	9615576.	$56\% + 19\% 2s^2 2p^3 (^2P) 4f^{1} D + 12\% 2s^2 2p^3 (^2D) 4f^{1} P$
339	2s ² 2p ³ (² P) 4f ¹	³ D	3	9619775.	$37\% + 27\% 2s^2 2p^3 (^2P) 4f^{1} {}^{3}F + 11\% 2s^2 2p^3 (^2P) 4f^{1} {}^{1}F$
340	$2s^2 2p^3 (^2P) 4f^1$	^{1}D	2	9 620 200.	$36\% + 35\% 2s^2 2p^3 (^2P) 4f^{1} {}^3F$
341	$2s^2 2p^3 (^2P) 4f^1$	¹ F	3	9 620 622.	$37\% + 20\% 2s^2 2p^3 (^2P) 4f^{1}{}^3G + 18\% 2s^2 2p^3 (^2P) 4f^{1}{}^3F$
342	$2s^2 2p^3 (^2P) 4f^1$	³ F	4	9 621 467.	$55\% + 12\% 2s^2 2p^3 (^2P) 4f^{1-1}G$
343	$2s^{1} 2p^{4} (^{4}P) 4s^{1}$	⁵ P	3	9 747 903.	97%
344	$2s^{1} 2p^{4} (^{4}P) 4s^{1}$	³ P	2	9772064	$73\% + 24\% 2s^{1} 2p^{4} (^{4}P) 4s^{1} {}^{5}P$
345	$2s^{1} 2p^{4} (^{4}P) 4s^{1}$	5P	2	9 820 267	$74\% + 24\% 2s^{1} 2p^{4} (^{4}P) 4s^{1} {}^{3}P$
346	$2s^{1} 2p^{4} (^{4}P) 4s^{1}$	5P	-	9 829 742	$78\% + 19\% 2s^{1} 2p^{4} ({}^{4}P) 4s^{1} {}^{3}P$
347	$2s^{1} 2n^{4} (^{4}P) 4n^{1}$	5P	3	9 845 022	$61\% + 33\% 2s^{1} 2p^{4} (^{4}P) 4p^{1.5}D$
348	$2s^{1} 2p^{4} (^{4}P) 4p^{1}$	5p	2	9846715	$56\% + 25\% 2s^{1} 2p^{4} (^{4}P) 4p^{1} 5S + 10\% 2s^{1} 2p^{4} (^{4}P) 4n^{1} 5D$
349	$2s^{1} 2n^{4} (^{4}P) 4s^{1}$	3 p		9850941	$78\% + 17\% 2s^{1} 2n^{4} (^{4}P) 4s^{1} {}^{5}P$
350	$2s^{1} 2p^{4} (^{4}P) 4n^{1}$	5D	1	9857121	07%
351	$2s^{1} 2p^{4} (^{4}P) 4p^{1}$	³ D	3	9 862 799	$78\% \pm 14\% 2s^{1} 2p^{4} (^{4}P) 4p^{1.5}P$
352	$2s^{-}2p^{-}(1) + p^{-}$ $2s^{1} 2p^{4} (^{4}P) 4s^{1}$	3p	0	9866261	0.1%
252	$2s^{-}2p^{-}(1)^{-}4s^{-}$	3 c	1	9 800 201.	7+70 $400\% + 250\% 20^{1} 20^{4} (^{4}\text{D}) 40^{1} ^{5}\text{D} + 220\% 20^{1} 20^{4} (^{4}\text{D}) 40^{1} ^{3}\text{D}$
254	$2s^{-}2p^{-}(P)^{-}4p^{-}$	30	1	98/4431.	40% + 23% 28 2p (P) $4p$ P + 22% 28 2p (P) $4p$ P 25% + 24% 2s 2p (P) $4p$ 1 $3p$ + 16% 2s 2p (P) $4p$ 1 $5s$
255	2s 2p (F) 4p	50	1	9 880 137.	55% + 54% 28 2p (r)4p r + 10% 28 2p (r)4p 's $51\% + 27\% 2s^{-1} 2s^{-4} (4p) 4s^{-1} 3s + 15\% 2s^{-1} 2s^{-4} (4p) 4s^{-1} 5p$
333 250	$2s^{2} 2p^{2} (^{4}P) 4p^{2}$	۲° ۲	1	9913612.	$51\% + 27\% 2s^{2} 2p^{2} (P) 4p^{2} S + 15\% 2s^{2} 2p^{2} (P) 4p^{2} D$
350	$2s^{2} 2p^{2} (^{4}P) 4p^{2}$	² D ۲D	3	9923679.	$60\% + 23\% 2s^{\circ} 2p^{\circ} (P) 4p^{\circ} P + 15\% 2s^{\circ} 2p^{\circ} (P) 4p^{\circ} D$
357	$2s^{1} 2p^{4} (^{4}P) 4p^{1}$	5D	2	9924 /84.	$62\% + 24\% 25^{\circ} 2p^{\circ} (^{\circ}P) 4p^{\circ} ^{\circ}P$
358	$2s^{1} 2p^{2} (^{4}P) 4p^{1}$	5D	l	9931461.	$61\% + 19\% 2s^{2} 2p^{4} (^{4}P) 4p^{2} ^{5}P + 16\% 2s^{2} 2p^{4} (^{4}P) 4p^{2} ^{5}D$
359	$2s^{1} 2p^{4} (^{4}P) 4p^{1}$	⁵ D	0	9934178.	
360	$2s^{+} 2p^{-} (^{+}P) 4p^{+}$	³ S	2	9934457.	31% + 24% 2s ⁺ 2p ⁺ (*P) 4p ⁺ ³ D + 24% 2s ⁺ 2p ⁺ (*P) 4p ⁺ ³ P
361	$2s^{1} 2p^{4} (^{4}P) 4p^{1}$	°D	1	9 949 583.	$56\% + 15\% 2s^{+} 2p^{+} (^{+}P) 4p^{+} ^{3}D + 13\% 2s^{+} 2p^{+} (^{+}P) 4p^{+} ^{3}P$
362	$2s^{1} 2p^{4} (^{4}P) 4d^{1}$	D ج-	4	9954334.	64% + 33% 2s ¹ 2p ⁺ (*P) 4d ¹³ F
363	$2s^{1} 2p^{4} (^{4}P) 4d^{1}$	³ D	3	9954577.	$66\% + 15\% 2s^{+} 2p^{+} (^{+}P) 4d^{+} ^{3}P + 15\% 2s^{+} 2p^{+} (^{+}P) 4d^{+} ^{5}F$
364	$2s^{1} 2p^{4} (^{4}P) 4p^{1}$	۶D	2	9 955 403.	$34\% + 27\% 2s^{1} 2p^{4} (^{4}P) 4p^{1} ^{3}P + 15\% 2s^{1} 2p^{4} (^{4}P) 4p^{1} ^{5}P$
365	$2s^{1} 2p^{4} (^{4}P) 4p^{1}$	۶P	0	9 957 053.	90%
366	$2s^{1} 2p^{4} (^{4}P) 4d^{1}$	۶D	2	9957910.	$53\% + 36\% 2s^{1} 2p^{4} (^{4}P) 4d^{1} ^{5}P$
367	$2s^{1} 2p^{4} (^{4}P) 4d^{1}$	۶F	5	9 961 877.	97%
368	$2s^{1} 2p^{4} (^{4}P) 4d^{1}$	⁵ P	1	9 962 803.	$63\% + 30\% 2s^{1} 2p^{4} (^{4}P) 4d^{1} {}^{5}D$
369	$2s^{1} 2p^{4} (^{4}P) 4p^{1}$	³ P	1	9 968 765.	$53\% + 23\% 2s^{1} 2p^{4} (^{4}P) 4p^{1} {}^{3}D + 15\% 2s^{1} 2p^{4} (^{4}P) 4p^{1} {}^{3}S$
370	$2s^{1} 2p^{4} (^{4}P) 4d^{1}$	³ F	4	9 976 846.	$76\% + 15\% 2s^{1} 2p^{4} (^{4}P) 4d^{1} {}^{5}F$
371	$2s^1 2p^4 (^4P) 4d^1$	³ P	0	9 984 870.	$52\% + 43\% 2s^1 2p^4 (^4P) 4d^{15}D$
372	$2s^1 2p^4 (^4P) 4d^1$	${}^{3}\mathbf{P}$	1	9 990 544.	$40\% + 21\% \ 2s^1 \ 2p^4 \ (^4P) \ 4d^1 \ ^5P + 17\% \ 2s^1 \ 2p^4 \ (^4P) \ 4d^1 \ ^5D$
373	$2s^1 2p^4 (^4P) 4d^1$	${}^{3}F$	3	9 991 366.	$37\% + 35\% \ 2s^1 \ 2p^4 \ (^4P) \ 4d^{1 \ 3}D + 13\% \ 2s^1 \ 2p^4 \ (^4P) \ 4d^{1 \ 5}F$
374	$2s^1 \; 2p^4 \; (^4P) \; 4d^1$	³ D	2	9 995 072.	$36\% + 23\% \ 2s^1 \ 2p^4 \ (^4P) \ 4d^{1 \ 5}P + 19\% \ 2s^1 \ 2p^4 \ (^4P) \ 4d^{1 \ 3}P$
375	$2s^1 \ 2p^4 \ (^4P) \ 4f^1$	⁵ F	4	10 019 609.	$59\% + 23\% \ 2s^1 \ 2p^4 \ (^4P) \ 4f^{1} \ ^5G + 10\% \ 2s^1 \ 2p^4 \ (^4P) \ 4f^{1} \ ^5D$
376	$2s^1 2p^4 (^4P) 4f^1$	⁵ F	5	10 019 679.	$56\% + 40\% 2s^1 2p^4 (^4P) 4f^{1} {}^5G$

Table 1. continued.

Index	Configuration	LS	J	$E ({\rm cm}^{-1})$	Composition
377	$2s^{1} 2p^{4} (^{4}P) 4f^{1}$	⁵ F	3	10 020 791.	$52\% + 21\% 2s^{1} 2p^{4} (^{4}P) 4f^{1} {}^{5}D + 11\% 2s^{1} 2p^{4} (^{4}P) 4f^{1} {}^{5}G$
378	$2s^{1} 2p^{4} (^{4}P) 4f^{1}$	⁵ G	6	10 022 791.	96%
379	$2s^{1} 2p^{4} (^{4}P) 4f^{1}$	⁵ F	2	10 023 034.	$41\% + 38\% 2s^1 2p^4 (^4P) 4f^{15}D$
380	$2s^{1} 2p^{4} (^{4}P) 4f^{1}$	³ F	4	10 023 358.	$54\% + 30\% 2s^{1} 2p^{4} (^{4}P) 4f^{1} {}^{3}G$
381	$2s^{1} 2p^{4} (^{4}P) 4f^{1}$	³ G	5	10 023 912.	84%
382	$2s^{1} 2p^{4} (^{4}P) 4f^{1}$	³ F	3	10 025 549.	$50\% + 18\% 2s^{1} 2p^{4} (^{4}P) 4f^{1} {}^{5}D + 18\% 2s^{1} 2p^{4} (^{4}P) 4f^{1} {}^{3}D$
383	$2s^{1} 2p^{4} (^{4}P) 4f^{1}$	⁵ D	1	10 025 679.	$64\% + 23\% 2s^{1} 2p^{4} (^{4}P) 4f^{1} {}^{5}F + 10\% 2s^{1} 2p^{4} (^{4}P) 4f^{1} {}^{3}D$
384	$2s^{1} 2p^{4} (^{4}P) 4f^{1}$	⁵ D	0	10 027 697.	97%
385	$2s^1 2p^4 (^4P) 4d^1$	⁵ D	0	10 028 257.	$56\% + 41\% 2s^1 2p^4 (^4P) 4d^{1 3}P$
386	$2s^{1} 2p^{4} (^{4}P) 4f^{1}$	³ D	2	10 028 323.	$43\% + 28\% 2s^{1} 2p^{4} (^{4}P) 4f^{1} {}^{3}F + 25\% 2s^{1} 2p^{4} (^{4}P) 4f^{1} {}^{5}D$
387	$2s^1 2p^4 (^4P) 4d^1$	⁵ F	4	10 028 769.	$49\% + 29\% 2s^{1} 2p^{4} (^{4}P) 4d^{1} {}^{5}D + 21\% 2s^{1} 2p^{4} (^{4}P) 4d^{1} {}^{3}F$
388	$2s^2 2p^3 (^4S) 5s^1$	⁵ S	2	10 029 917.	87%
389	$2s^{1} 2p^{4} (^{4}P) 4f^{1}$	³ D	1	10 030 448.	$73\% + 21\% 2s^1 2p^4 (^4P) 4f^{15}D$
390	$2s^{1} 2p^{4} (^{4}P) 4d^{1}$	⁵ D	1	10 030 621.	$42\% + 30\% 2s^{1} 2p^{4} (^{4}P) 4d^{1} {}^{3}P + 11\% 2s^{1} 2p^{4} (^{4}P) 4d^{1} {}^{5}P$
391	$2s^{1} 2p^{4} (^{4}P) 4d^{1}$	⁵ P	2	10 034 178.	$28\% + 18\% 2s^{1} 2p^{4} (^{4}P) 4d^{1} {}^{5}F + 18\% 2s^{1} 2p^{4} (^{4}P) 4d^{1} {}^{5}D$
392	$2s^{1} 2p^{4} (^{4}P) 4d^{1}$	⁵ F	3	10 034 685.	$56\% + 15\% 2s^{1} 2p^{4} ({}^{4}P) 4d^{1} {}^{5}P + 13\% 2s^{1} 2p^{4} ({}^{4}P) 4d^{1} {}^{3}D$
393	$2s^2 2p^3 ({}^4S) 5s^1$	^{3}S	1	10 036 271.	87%
394	$2s^{1} 2p^{4} (^{4}P) 4d^{1}$	⁵ F	2	10 041 077.	$57\% + 20\% 2s^1 2p^4 (^4P) 4d^{15}D$
395	$2s^1 2p^4 (^4P) 4d^1$	⁵ P	3	10 041 395.	$43\% + 22\% 2s^{1} 2p^{4} ({}^{4}P) 4d^{1} {}^{5}D + 12\% 2s^{1} 2p^{4} ({}^{4}P) 4d^{1} {}^{3}F$
396	$2s^1 2p^4 (^4P) 4d^1$	⁵ F	1	10 043 508.	79%
397	$2s^{1} 2p^{4} (^{2}D) 4s^{1}$	³ D	1	10 054 379.	80%
398	$2s^{1} 2p^{4} (^{2}D) 4s^{1}$	³ D	2	10 058 837.	81%
399	$2s^1 2p^4 (^4P) 4d^1$	³ F	2	10 062 792.	$59\% + 20\% 2s^1 2p^4 (^4P) 4d^{1 3}P$
400	$2s^{1} 2p^{4} (^{2}D) 4s^{1}$	^{3}D	3	10 063 969.	$30\% + 27\% 2s^{1} 2p^{4} (^{4}P) 4d^{1} {}^{3}F + 25\% 2s^{1} 2p^{4} (^{4}P) 4d^{1} {}^{3}D$
401	2s ¹ 2p ⁴ (⁴ P) 4d ¹	^{3}D	1	10 070 264.	$61\% + 14\% 2s^{1} 2p^{4} (^{4}P) 4d^{1} {}^{3}P + 10\% 2s^{1} 2p^{4} (^{2}D) 4s^{1} {}^{3}D$
402	$2s^1 2p^4 (^2D) 4s^1$	^{3}D	3	10 073 278.	$65\% + 15\% 2s^1 2p^4 (^4P) 4d^{1 3}D$
403	$2s^2 2p^3$ (⁴ S) $5p^1$	⁵ P	1	10 076 909.	86%
404	$2s^2 2p^3$ (⁴ S) $5p^1$	⁵ P	2	10 078 238.	72%
405	$2s^2 \ 2p^3 \ (^4S) \ 5p^1$	⁵ P	3	10 082 863.	78%
406	$2s^1 2p^4 (^4P) 4d^1$	^{3}D	2	10 083 045.	$29\% + 21\% \ 2s^2 \ 2p^3 \ (^4S) \ 5p^{1 \ 3}P + 18\% \ 2s^1 \ 2p^4 \ (^4P) \ 4d^{1 \ 3}P$
407	$2s^1 2p^4 (^4P) 4f^1$	⁵ F	1	10 087 007.	$72\% + 14\% \ 2s^1 \ 2p^4 \ (^4P) \ 4f^{1 \ 3}D + 13\% \ 2s^1 \ 2p^4 \ (^4P) \ 4f^{1 \ 5}D$
408	$2s^1 2p^4 (^4P) 4f^1$	⁵ G	5	10 087 520.	$45\% + 40\% \ 2s^1 \ 2p^4 \ (^4P) \ 4f^1 \ ^5F + 11\% \ 2s^1 \ 2p^4 \ (^4P) \ 4f^1 \ ^3G$
409	$2s^1 \ 2p^4 \ (^4P) \ 4f^1$	⁵ G	4	10 088 414.	$37\% + 31\% \ 2s^1 \ 2p^4 \ (^4P) \ 4f^{1 \ 3}F + 18\% \ 2s^1 \ 2p^4 \ (^4P) \ 4f^{1 \ 3}G$
410	$2s^1 \; 2p^4 \; (^2D) \; 4s^1$	^{1}D	2	10 088 640.	81%
411	$2s^1 \; 2p^4 \; (^4P) \; 4f^1$	⁵ F	2	10 088 837.	$43\% + 30\% \ 2s^1 \ 2p^4 \ (^4P) \ 4f^1 \ ^5D + 20\% \ 2s^1 \ 2p^4 \ (^4P) \ 4f^1 \ ^3F$
412	$2s^2 \ 2p^3 \ (^4S) \ 5p^1$	^{3}P	1	10 090 505.	78%
413	$2s^1 \ 2p^4 \ (^4P) \ 4f^1$	⁵ G	3	10 091 288.	$46\% + 35\% \ 2s^1 \ 2p^4 \ (^4P) \ 4f^{1-5}D$
414	$2s^1 \ 2p^4 \ (^4P) \ 4f^1$	³ D	2	10 092 496.	$36\% + 30\% \ 2s^1 \ 2p^4 \ (^4P) \ 4f^{1 \ 3}F + 29\% \ 2s^1 \ 2p^4 \ (^4P) \ 4f^{1 \ 5}G$
415	$2s^1 \ 2p^4 \ (^4P) \ 4f^1$	^{3}G	4	10 092 728.	$38\% + 32\% \ 2s^1 \ 2p^4 \ (^4P) \ 4f^1 \ ^5D + 23\% \ 2s^1 \ 2p^4 \ (^4P) \ 4f^1 \ ^5G$
416	$2s^1 \ 2p^4 \ (^4P) \ 4f^1$	³ G	3	10 093 449.	$41\% + 27\% \ 2s^1 \ 2p^4 \ (^4P) \ 4f^{1 \ 3}D + 11\% \ 2s^1 \ 2p^4 \ (^4P) \ 4f^{1 \ 5}F$
417	$2s^2 \; 2p^3 \; (^4S) \; 5p^1$	^{3}P	0	10 095 133.	90%
418	$2s^2 \; 2p^3 \; (^4S) \; 5p^1$	^{3}P	2	10 096 671.	$50\% + 19\% 2s^1 2p^4 (^4P) 4d^{1 3}P$
419	$2s^1 2p^4$ (⁴ P) $4f^1$	⁵ G	2	10 1 10 105.	$53\% + 13\% \ 2s^1 \ 2p^4 \ (^4P) \ 4f^{1 \ 5}F + 13\% \ 2s^1 \ 2p^4 \ (^4P) \ 4f^{1 \ 3}F$
420	$2s^1 2p^4$ (⁴ P) $4f^1$	⁵ G	3	101 11 137.	$27\% + 23\% \ 2s^1 \ 2p^4 \ (^4P) \ 4f^{1 \ 5}F + 23\% \ 2s^1 \ 2p^4 \ (^4P) \ 4f^{1 \ 3}G$
421	$2s^1 2p^4$ (⁴ P) $4f^1$	⁵ D	4	10 113 102.	$47\% + 24\% 2s^1 2p^4 (^4P) 4f^{1-5}F$
422	$2s^1 2p^4$ (⁴ P) $4f^1$	³ D	3	10114678.	$41\% + 29\% \ 2s^1 \ 2p^4 \ (^4P) \ 4f^{1 \ 3}F + 20\% \ 2s^1 \ 2p^4 \ (^4P) \ 4f^{1 \ 3}G$

V. Jonauskas et al.: Transition rates for Fe xix, Online Material p 11

Table 1. continued.

Index	Configuration	LS	J	$E ({\rm cm}^{-1})$	Composition
423	2s ² 2p ³ (⁴ S) 5d ¹	⁵ D	0	10 131 741.	91%
424	2s ² 2p ³ (⁴ S) 5d ¹	⁵ D	2	10 131 778.	89%
425	2s ² 2p ³ (⁴ S) 5d ¹	⁵ D	1	10 131 778.	90%
426	2s ² 2p ³ (⁴ S) 5d ¹	⁵ D	3	10 131 820.	88%
427	2s ² 2p ³ (⁴ S) 5d ¹	⁵ D	4	10 132 479.	90%
428	$2s^2 2p^3$ (⁴ S) $5d^1$	³ D	2	10 144 800.	84%
429	$2s^2 \ 2p^3 \ (^4S) \ 5d^1$	³ D	1	10 148 213.	89%
430	$2s^2 \ 2p^3 \ (^4S) \ 5d^1$	³ D	3	10 148 966.	87%
431	$2s^1 \ 2p^4 \ (^2D) \ 4p^1$	³ F	2	10 151 165.	83%
432	$2s^1 \ 2p^4 \ (^2D) \ 4p^1$	³ D	1	10 151 752.	$48\% + 26\% \ 2s^2 \ 2p^3 \ (^2\mathrm{D}) \ 5s^1 \ ^3\mathrm{D} + 12\% \ 2s^1 \ 2p^4 \ (^2\mathrm{D}) \ 4p^{1-1}\mathrm{P}$
433	$2s^1 \ 2p^4 \ (^2D) \ 4p^1$	³ D	2	10 159 634.	$32\% + 29\% 2s^2 2p^3 (^2D) 5s^{1\ 3}D + 11\% 2s^2 2p^3 (^2D) 5s^{1\ 1}D$
434	$2s^1 \ 2p^4 \ (^2D) \ 4p^1$	³ F	3	10 160 953.	89%
435	$2s^2 2p^3$ (⁴ S) $5f^1$	⁵ F	3	10 164 794.	82%
436	$2s^2 2p^3$ (⁴ S) $5f^1$	⁵ F	4	10 164 800.	85%
437	$2s^2 2p^3$ (⁴ S) $5f^1$	⁵ F	2	10 165 020.	87%
438	$2s^2 2p^3$ (⁴ S) $5f^1$	⁵ F	5	10 165 091.	90%
439	$2s^2 2p^3$ (⁴ S) $5f^1$	⁵ F	1	10 1652 58.	90%
440	$2s^2 \; 2p^3 \; (^4S) \; 5f^1$	${}^{3}F$	3	10 166 383.	82%
441	$2s^2 \ 2p^3 \ (^4S) \ 5f^1$	³ F	4	10 166 496.	85%
442	$2s^2 \; 2p^3 \; (^4S) \; 5f^1$	${}^{3}F$	2	10 167 030.	87%
443	$2s^1 \; 2p^4 \; (^2D) \; 4p^1$	$^{1}\mathrm{F}$	3	10 169 519.	$58\% + 30\% 2s^1 2p^4 (^2D) 4p^{1-3}D$
444	$2s^2 \; 2p^3 \; (^4S) \; 5g^1$	^{3}G	5	10 169 934.	$67\% + 22\% \ 2s^2 \ 2p^3 \ (^4S) \ 5g^1 \ ^5G$
445	$2s^2 \; 2p^3 \; (^4S) \; 5g^1$	⁵ G	6	10 170 208.	89%
446	$2s^1 \; 2p^4 \; (^2D) \; 4p^1$	${}^{3}\mathbf{P}$	1	10 170 216.	$52\% + 21\% 2s^1 2p^4 (^2D) 4p^{1-1}P + 16\% 2s^2 2p^3 (^2D) 5s^{1-3}D$
447	$2s^2 \; 2p^3 \; (^4S) \; 5g^1$	³ G	4	10 170 540.	$45\% + 42\% \ 2s^2 \ 2p^3 \ (^4S) \ 5g^{1-5}G$
448	$2s^2 \ 2p^3 \ (^4S) \ 5g^1$	⁵ G	5	10 170 816.	$65\% + 22\% \ 2s^2 \ 2p^3 \ (^4S) \ 5g^{1-3}G$
449	$2s^2 \; 2p^3 \; (^4S) \; 5g^1$	⁵ G	3	10 171 325.	$63\% + 23\% \ 2s^2 \ 2p^3 \ (^4S) \ 5g^{1-3}G$
450	$2s^2 \; 2p^3 \; (^4S) \; 5g^1$	⁵ G	4	10 171 630.	$44\% + 42\% \ 2s^2 \ 2p^3 \ (^4S) \ 5g^{1-3}G$
451	$2s^2 \; 2p^3 \; (^4S) \; 5g^1$	⁵ G	2	10 172 086.	85%
452	$2s^2 \; 2p^3 \; (^4S) \; 5g^1$	^{3}G	3	10 172 454.	$62\% + 22\% \ 2s^2 \ 2p^3 \ (^4S) \ 5g^{1-5}G$
453	$2s^1 \; 2p^4 \; (^2D) \; 4p^1$	³ F	4	10 174 246.	97%
454	$2s^1 \; 2p^4 \; (^2D) \; 4p^1$	³ D	2	10 179 727.	$41\% + 30\% \ 2s^1 \ 2p^4 \ (^2D) \ 4p^1 \ ^3P + 16\% \ 2s^2 \ 2p^3 \ (^2D) \ 5s^1 \ ^1D$
455	$2s^1 \; 2p^4 \; (^2D) \; 4p^1$	³ D	3	10 179 940.	$46\% + 30\% \ 2s^1 \ 2p^4 \ (^2D) \ 4p^{1-1}F + 19\% \ 2s^2 \ 2p^3 \ (^2D) \ 5s^{1-3}D$
456	$2s^1 \; 2p^4 \; (^2D) \; 4p^1$	${}^{3}\mathbf{P}$	0	10 180 266.	86%
457	$2s^1 \; 2p^4 \; (^2D) \; 4p^1$	^{1}D	2	10 184 747.	$50\% + 33\% 2s^1 2p^4 (^2D) 4p^{1 3}P$
458	2s ² 2p ³ (² D) 5s ¹	³ D	1	10 185 432.	$36\% + 32\% \ 2s^1 \ 2p^4 \ (^2D) \ 4p^1 \ ^3D + 20\% \ 2s^1 \ 2p^4 \ (^2D) \ 4p^1 \ ^3P$
459	$2s^1 \; 2p^4 \; (^2D) \; 4p^1$	${}^{3}\mathbf{P}$	2	10 188 698.	$31\% + 26\% 2s^1 2p^4 (^2D) 4p^{1\ 1}D + 19\% 2s^2 2p^3 (^2D) 5s^{1\ 3}D$
460	$2s^1 \; 2p^4 \; (^2D) \; 4p^1$	^{1}P	1	10 195 743.	$59\% + 19\% 2s^1 2p^4 (^2D) 4p^{1 3}P + 15\% 2s^1 2p^4 (^2D) 4p^{1 3}D$
461	$2s^1 2p^4$ (² S) $4s^1$	^{3}S	1	10 206 315.	$53\% + 11\% 2s^2 2p^3 (^2D) 5p^{1-1}P$
462	2s ² 2p ³ (² D) 5s ¹	^{1}D	2	10 211 635.	$51\% + 32\% 2s^2 2p^3 (^2D) 5s^{1/3}D$
463	$2s^2 2p^3$ (² D) $5s^1$	³ D	3	10 212 017.	$76\% + 20\% 2s^1 2p^4 (^2D) 4p^{1 3}D$
464	$2s^2 \; 2p^3 \; (^2D) \; 5p^1$	³ D	1	10 220 024.	$47\% + 17\% \ 2s^1 \ 2p^4 \ (^2S) \ 4s^{1 \ 3}S + 12\% \ 2s^2 \ 2p^3 \ (^2D) \ 5p^{1 \ 1}P$
465	$2s^2 \; 2p^3 \; (^2D) \; 5p^1$	³ F	2	10 220 805.	73%
466	$2s^2 \; 2p^3 \; (^2D) \; 5p^1$	³ F	3	10 224 866.	$44\% + 28\% \ 2s^2 \ 2p^3 \ (^2D) \ 5p^{1-1}F + 15\% \ 2s^2 \ 2p^3 \ (^2P) \ 5p^{1-3}D$

Table 1. continued.

Index	Configuration	15	T	$F(am^{-1})$	Composition
Muex			J	<i>E</i> (cm ⁻)	5277 + 2277 + 2127 + 4727 + 4137 + 2077 + 2237777 + 1377 + 213777 + 213777 + 213777 + 21377 + 21377 + 21377 + 21377 + 21377 + 21377 + 21377
40/	$2s^{2} 2p^{2} (2s) 4s^{4}$	35	0	10 225 279.	$55\% + 22\% 2s^{-} 2p^{-} (^{-}P) 4s^{-} ^{-}P + 20\% 2s^{-} 2p^{-} (^{-}D) 5p^{+} ^{-}P$
468	$2s^{2} 2p^{2} (^{2}D) 5p^{1}$	² D 3р	2	10 22 / 881.	$00\% + 12\% 2s^{-} 2p^{-} (^{-}P) 3p^{-} P$
469	$2s^2 2p^3 (^2D) 5p^1$	³ P	1	10 234 327.	$33\% + 22\% 2s^2 2p^3 (^2D) 5p^4 P + 17\% 2s^2 2p^3 (^2D) 5p^4 D$
470	$2s^2 2p^3 (^2D) 5p^1$	² P	0	10 234 489.	$61\% + 16\% 2s^{2} 2p^{4} (^{2}S) 4s^{4} ^{3}S$
471	2s ² 2p ³ (² D) 5p ¹	⁵ F	3	10 252 186.	$35\% + 34\% 2s^2 2p^3 (^2D) 5p^{-3}D + 26\% 2s^2 2p^3 (^2D) 5p^{-1}F$
472	2s ² 2p ³ (² D) 5p ¹	۶P	1	10 253 092.	$35\% + 28\% 2s^2 2p^3 (^2D) 5p^{-1}P + 17\% 2s^{-1} 2p^4 (^2P) 4s^{-1}P$
473	2s ² 2p ³ (² D) 5p ¹	³ P	2	10 255 657.	$50\% + 23\% 2s^{1} 2p^{4} (^{2}P) 4s^{1} {}^{3}P + 18\% 2s^{2} 2p^{3} (^{2}D) 5p^{1} {}^{3}D$
474	$2s^2 2p^3 (^2D) 5p^1$	³ F	4	10 256 907.	95%
475	$2s^2 2p^3 (^2D) 5p^1$	³ D	3	10 257 163.	$56\% + 33\% 2s^2 2p^3 (^2D) 5p^{1-1}F$
476	$2s^1 2p^4 (^2D) 4d^1$	³ G	3	10 260 304.	87%
477	$2s^1 2p^4 (^2D) 4d^1$	³ G	4	10 264 464.	80%
478	2s ² 2p ³ (² D) 5p ¹	^{1}D	2	10 271 678.	$62\% + 13\% 2s^1 2p^4 (^2P) 4s^{1} {}^3P$
479	$2s^1 2p^4 (^2D) 4d^1$	${}^{3}F$	2	10 274 524.	72%
480	$2s^1 2p^4 (^2D) 4d^1$	³ G	5	10 275 448.	96%
481	$2s^1 2p^4 (^2D) 4d^1$	${}^{3}\mathbf{P}$	0	10 276 855.	$72\% + 19\% 2s^1 2p^4 (^2D) 4d^{1-1}S$
482	$2s^1 2p^4 (^2D) 4d^1$	^{3}D	1	10 276 874.	$21\% + 21\% \ 2s^1 \ 2p^4 \ (^2D) \ 4d^{1 \ 3}S + 20\% \ 2s^1 \ 2p^4 \ (^2D) \ 4d^{1 \ 1}P$
483	$2s^1 2p^4 (^2P) 4s^1$	³ P	2	10 276 965.	$51\% + 35\% 2s^2 2p^3 (^2D) 5p^{1-3}P$
484	$2s^2 2p^3 (^2D) 5d^1$	${}^{3}F$	2	10 277 827.	68%
485	$2s^1 2p^4 (^2D) 4d^1$	${}^{3}F$	3	10 278 678.	$66\% + 13\% 2s^1 2p^4 (^2D) 4d^{1 3}D$
486	$2s^1 2p^4 (^2D) 4d^1$	^{3}D	1	10 279 350.	$46\% + 16\% \ 2s^1 \ 2p^4 \ (^2P) \ 4s^{1-1}P + 10\% \ 2s^1 \ 2p^4 \ (^2P) \ 4s^{1-3}P$
487	$2s^2 \ 2p^3 \ (^2D) \ 5d^1$	^{3}G	3	10 279 431.	$62\% + 14\% 2s^2 2p^3 (^2D) 5d^{1-3}F$
488	2s ² 2p ³ (² D) 5d ¹	^{3}D	1	10 279 494.	$55\% + 21\% 2s^2 2p^3 (^2D) 5d^{1-1}P$
489	2s ² 2p ³ (² D) 5d ¹	³ G	4	10 279 933.	$42\% + 31\% 2s^2 2p^3 (^2D) 5d^{1 \ 1}G + 15\% 2s^2 2p^3 (^2P) 5d^{1 \ 3}F$
490	2s ² 2p ³ (² D) 5d ¹	^{1}S	0	10 280 208.	$43\% + 33\% 2s^2 2p^3 (^{2}D) 5d^{1}{}^{3}P + 15\% 2s^2 2p^3 (^{2}P) 5d^{1}{}^{3}P$
491	2s ¹ 2p ⁴ (² D) 4d ¹	^{3}D	2	10 281 638.	$46\% + 31\% 2s^1 2p^4 (^2D) 4d^{1 3}P$
492	2s ¹ 2p ⁴ (² D) 4d ¹	^{3}S	1	10 281 984.	$37\% + 20\% 2s^1 2p^4 (^{2}D) 4d^{1 3}P + 18\% 2s^1 2p^4 (^{2}P) 4s^{1 1}P$
493	2s ² 2p ³ (² D) 5d ¹	${}^{3}F$	3	10 282 235.	$39\% + 14\% 2s^2 2p^3 (^2D) 5d^{1}F + 13\% 2s^2 2p^3 (^2D) 5d^{1}^3D$
494	$2s^1 2p^4 (^2D) 4d^1$	^{1}G	4	10 284 931.	$46\% + 34\% 2s^{1} 2p^{4} (^{2}D) 4d^{1} {}^{3}F + 12\% 2s^{1} 2p^{4} (^{2}D) 4d^{1} {}^{3}G$
495	$2s^2 2p^3$ (² D) $5d^1$	^{3}D	2	10 287 333.	$42\% + 25\% 2s^2 2p^3 (^{2}D) 5d^{1} {}^{3}P + 10\% 2s^2 2p^3 (^{2}D) 5d^{1} {}^{1}D$
496	$2s^{1} 2p^{4} (^{2}D) 4d^{1}$	${}^{3}\mathbf{P}$	1	10 288 596.	$60\% + 33\% 2s^1 2p^4 (^2D) 4d^{1/3}S$
497	$2s^2 2p^3 (^2D) 5d^1$	${}^{3}\mathbf{P}$	1	10 288 811.	$36\% + 25\% 2s^2 2p^3 (^2D) 5d^{13}S + 12\% 2s^2 2p^3 (^2D) 5d^{11}P$
498	$2s^{1} 2p^{4} (^{2}D) 4d^{1}$	${}^{3}P$	2	10 291 387.	$60\% + 30\% 2s^1 2p^4 (^2D) 4d^{1 3}D$
499	$2s^{1} 2p^{4} (^{2}D) 4d^{1}$	^{3}D	3	10 292 261.	$73\% + 16\% 2s^1 2p^4 (^2D) 4d^{1 3}F$
500	$2s^{1} 2p^{4} (^{2}D) 4d^{1}$	³ F	4	10 292 768.	$51\% + 41\% 2s^{1} 2p^{4} (^{2}D) 4d^{1} G$
501	$2s^2 2p^3 (^2P) 5s^1$	${}^{3}\mathbf{P}$	0	10 297 256.	$41\% + 35\% 2s^{1} 2p^{4} (^{2}S) 4p^{1} ^{3}P + 13\% 2s^{1} 2p^{4} (^{2}P) 4p^{1} ^{3}P$
502	$2s^2 2p^3 (^2D) 5g^1$	^{3}H	4	10 300 819.	$40\% + 26\% 2s^{1} 2p^{4} (^{2}\text{D}) 4f^{1} {}^{3}\text{H}$
503	$2s^2 2p^3 (^2D) 5g^1$	³ H	5	10 301 602.	$23\% + 18\% 2s^2 2p^3 (^2D) 5g^{1} H + 15\% 2s^2 2p^3 (^2D) 5g^{1} G$
504	$2s^2 2p^3 (^2D) 5g^1$	³ G	3	10 303 198.	$33\% + 17\% 2s^2 2p^3 (^2D) 5g^{1}F + 14\% 2s^1 2p^4 (^2D) 4f^{1}G$
505	$2s^{1} 2p^{4} (^{2}D) 4d^{1}$	¹ F	3	10 303 244	77%
506	$2s^2 2p^3 (^2D) 5g^1$	³ F	4	10 303 714	$30\% + 18\% 2s^2 2p^3 (^2D) 5g^{13}G + 14\% 2s^2 2p^3 (^2D) 5g^{11}G$
507	$2s^2 2p^3 (^2P) 5s^1$	³ P	1	10 304 003	$35\% + 29\% 2s^{1} 2p^{4} (^{2}S) 4p^{1} ^{3}P + 14\% 2s^{2} 2p^{3} (^{2}P) 5s^{1} ^{1}P$
508	$2s^{1} 2p^{4} (^{2}D) 4d^{1}$	¹ P	1	10 306 975	$67\% + 17\% 2s^{1} 2p^{4} (^{2}D) 4d^{13}D$
509	$2s^2 2p^3 (^2D) 5g^1$	^{1}D	2	10 307 078.	$27\% + 20\% 2s^{2} 2p^{3} (^{2}D) 5g^{1} {}^{3}F + 18\% 2s^{2} 2p^{3} (^{2}D) 5g^{1} {}^{3}D$
	1 1 7 0				I () C I () - 8 -

Table 1. continued.

Index	Configuration	LS	J	<i>E</i> (cm ⁻¹)	Composition
510	2s ² 2p ³ (² D) 5g ¹	³ D	3	10 307 504.	$46\% + 11\% 2s^2 2p^3 (^2D) 5g^{1-3}F$
511	2s ¹ 2p ⁴ (² D) 4d ¹	^{1}D	2	10 307 796.	$65\% + 11\% 2s^{1} 2p^{4} (^{2}D) 4d^{1} {}^{3}F$
512	2s ² 2p ³ (² D) 5f ¹	^{3}G	3	10 308 915.	55%
513	$2s^2 \ 2p^3 \ (^2D) \ 5f^1$	³ F	2	10 309 335.	$40\% + 18\% 2s^2 2p^3 (^2D) 5f^{1-1}D$
514	$2s^2 \ 2p^3 \ (^2D) \ 5f^1$	$^{3}\mathrm{H}$	4	10 309 411.	70%
515	$2s^2 \ 2p^3 \ (^2D) \ 5f^1$	^{3}G	4	10 309 604.	$27\% + 27\% \ 2s^2 \ 2p^3 \ (^2D) \ 5f^{1-1}G + 18\% \ 2s^2 \ 2p^3 \ (^2D) \ 5f^{1-3}F$
516	$2s^2 \ 2p^3 \ (^2D) \ 5f^1$	$^{3}\mathrm{H}$	5	10 309 765.	$39\% + 32\% \ 2s^2 \ 2p^3 \ (^2D) \ 5f^{1-1}H + 15\% \ 2s^2 \ 2p^3 \ (^2P) \ 5f^{1-3}G$
517	$2s^1 2p^4 (^2D) 4d^1$	^{1}S	0	10 309 886.	$74\% + 19\% 2s^1 2p^4 (^2D) 4d^{1 3}P$
518	$2s^2 \ 2p^3 \ (^2D) \ 5d^1$	^{3}F	4	10 310 728.	$78\% + 20\% \ 2s^2 \ 2p^3 \ (^2D) \ 5d^{1-3}G$
519	$2s^2 \ 2p^3 \ (^2D) \ 5f^1$	^{3}D	3	10 311 647.	$30\% + 25\% \ 2s^2 \ 2p^3 \ (^2D) \ 5f^{1-3}F + 15\% \ 2s^2 \ 2p^3 \ (^2D) \ 5f^{1-1}F$
520	$2s^2 \ 2p^3 \ (^2D) \ 5f^1$	^{1}P	1	10 311 867.	$35\% + 25\% 2s^2 2p^3 (^2D) 5f^{1\ 3}D + 15\% 2s^2 2p^3 (^2D) 5f^{1\ 3}P$
521	$2s^2 \ 2p^3 \ (^2D) \ 5d^1$	^{1}G	4	10 312 417.	$58\% + 27\% \ 2s^2 \ 2p^3 \ (^2\mathrm{D}) \ 5d^{1\ 3}\mathrm{G} + 14\% \ 2s^2 \ 2p^3 \ (^2\mathrm{D}) \ 5d^{1\ 3}\mathrm{F}$
522	$2s^2 \; 2p^3 \; (^2D) \; 5d^1$	³ G	5	10 312 436.	100%
523	$2s^2 2p^3$ (² D) $5f^1$	^{3}P	2	10 313 074.	$47\% + 20\% 2s^2 2p^3 (^2D) 5f^{1-3}D$
524	$2s^2 \ 2p^3 \ (^2D) \ 5g^1$	^{3}I	5	10 313 144.	70%
525	$2s^2 \ 2p^3 \ (^2D) \ 5g^1$	³ I	6	10 313 433.	$38\% + 32\% \ 2s^2 \ 2p^3 \ (^2D) \ 5g^{1-1}I + 15\% \ 2s^2 \ 2p^3 \ (^2P) \ 5g^{1-3}H$
526	$2s^2 2p^3 (^2D) 5d^1$	³ D	3	10 313 518.	$66\% + 30\% 2s^2 2p^3 (^2D) 5d^{1-3}F$
527	$2s^2 2p^3 (^2D) 5d^1$	${}^{3}\mathbf{P}$	0	10 314 908.	$53\% + 40\% 2s^2 2p^3 (^2D) 5d^{1-1}S$
528	$2s^1 \; 2p^4 \; (^2S) \; 4p^1$	¹ P	1	10 316 162.	$32\% + 20\% \ 2s^1 \ 2p^4 \ (^2S) \ 4p^{1 \ 3}P + 15\% \ 2s^1 \ 2p^4 \ (^2P) \ 4p^{1 \ 3}D$
529	$2s^2 2p^3 (^2D) 5d^1$	³ D	2	10 316 700.	$45\% + 41\% 2s^2 2p^3 (^2D) 5d^{1/3}P$
530	$2s^2 2p^3 (^2D) 5d^1$	$^{1}\mathbf{P}$	1	10317146.	$46\% + 29\% \ 2s^2 \ 2p^3 \ (^2D) \ 5d^{1 \ 3}D + 20\% \ 2s^2 \ 2p^3 \ (^2D) \ 5d^{1 \ 3}P$
531	$2s^1 2p^4 (^2S) 4p^1$	³ P	2	10 318 799.	$49\% + 12\% 2s^{1} 2p^{4} (^{2}D) 4f^{1} {}^{3}P + 10\% 2s^{2} 2p^{3} (^{2}D) 5d^{1} {}^{1}D$
532	$2s^2 2p^3 (^2D) 5d^1$	^{3}S	1	10 321 417.	$52\% + 31\% 2s^2 2p^3 (^2D) 5d^{1/3}P$
533	$2s^1 2p^4 (^2D) 4f^1$	^{1}P	1	10 323 772.	$33\% + 29\% 2s^{1} 2p^{4} (^{2}D) 4f^{1} {}^{3}D + 27\% 2s^{1} 2p^{4} (^{2}D) 4f^{1} {}^{3}P$
534	$2s^1 2p^4 (^2D) 4f^1$	³ P	2	10 324 035.	$56\% + 15\% 2s^1 2p^4 (^2S) 4p^1 {}^3P + 12\% 2s^1 2p^4 (^2D) 4f^1 {}^3D$
535	$2s^2 2p^3 (^2D) 5d^1$	^{1}D	2	10 324 286.	$53\% + 19\% 2s^2 2p^3 (^2D) 5d^{13}P + 10\% 2s^1 2p^4 (^2S) 4p^{13}P$
536	$2s^2 2p^3 (^2P) 5s^1$	³ P	0	10 325 233.	$55\% + 30\% 2s^1 2p^4 (^2S) 4p^{1-3}P$
537	$2s^2 2p^3 (^2D) 5d^1$	^{1}F	3	10 325 949.	$72\% + 12\% 2s^2 2p^3 (^2D) 5d^{1/3}D$
538	$2s^{1} 2p^{4} (^{2}D) 4f^{1}$	³ H	5	10 328 023.	$41\% + 19\% 2s^{1} 2p^{4} (^{2}D) 4f^{1} H + 17\% 2s^{2} 2p^{3} (^{2}D) 5g^{1} H$
539	$2s^{1} 2p^{4} (^{2}D) 4f^{1}$	³ H	6	10 328 024.	$62\% + 34\% 2s^2 2p^3 (^2D) 5g^{13}H$
540	$2s^{1} 2p^{4} (^{2}D) 4f^{1}$	³ H	4	10 329 881.	$39\% + 22\% 2s^2 2p^3 (^2D) 5g^{13}G + 20\% 2s^2 2p^3 (^2D) 5g^{11}G$
541	$2s^2 2p^3 (^2D) 5g^1$	3G	5	10 330 843.	$42\% + 26\% 2s^{1} 2p^{4} (^{2}D) 4f^{1} H + 18\% 2s^{1} 2p^{4} (^{2}D) 4f^{1} G$
542	$2s^{1} 2p^{4} (^{2}S) 4p^{1}$	¹ P	1	10 331 878.	$30\% + 20\% 2s^{1} 2p^{4} ({}^{2}S) 4p^{1} {}^{3}P + 15\% 2s^{2} 2p^{3} ({}^{2}P) 5s^{1} {}^{3}P$
543	2s ² 2p ³ (² D) 5g ¹	³ F	3	10 332 947.	$26\% + 20\% 2s^{-1} 2p^{4} ({}^{2}\text{D}) 4f^{-3}\text{F} + 20\% 2s^{-2} 2p^{3} ({}^{2}\text{D}) 5g^{-3}\text{G}$
544	2s ² 2p ³ (² D) 5g ¹	۶F	4	10 333 176.	$29\% + 25\% 2s^{-1} 2p^{4} ({}^{2}D) 4f^{-1} F + 13\% 2s^{-2} 2p^{3} ({}^{2}D) 5g^{-1}G$
545	$2s^{1} 2p^{4} (^{2}D) 4f^{1}$	³ D	3	10 333 255.	$47\% + 28\% 2s^2 2p^3 (^2D) 5g^{11}F + 11\% 2s^2 2p^3 (^2D) 5g^{13}F$
546	$2s^2 2p^3 (^2D) 5g^1$	² F	2	10 333 847.	$33\% + 25\% 2s^{-} 2p^{4} (^{2}D) 4t^{-} ^{3}D + 16\% 2s^{2} 2p^{3} (^{2}D) 5g^{-} ^{3}D$
547	$2s^{1} 2p^{4} (^{2}D) 4t^{1}$	³ F	2	10 334 135.	$42\% + 25\% 2s^{-}2p^{+}(^{2}D) 4f^{-}^{3}D + 21\% 2s^{2} 2p^{3}(^{2}D) 5g^{-}D$
548	$2s^2 2p^3 (^2D) 5g^1$	³ D	1	10 334 506.	$38\% + 36\% 2s^{-}2p^{+}(^{2}D) 4t^{-}^{3}D + 21\% 2s^{-}2p^{+}(^{2}D) 4t^{-}^{3}P$
549	$2s^{+} 2p^{-} (^{2}D) 4f^{1}$	-'Р 3тт	0	10/3349/75.	
550	$2s^{2} 2p^{3} (^{2}D) 5g^{1}$	°Н 30	4	10 335 117.	30% + 22% 2s ⁺ 2p ⁺ (² D) 4f ⁺ ³ H + 20% 2s ⁺ 2p ⁺ (² D) 4f ⁺ ¹ G
551 552	2s ⁻ $2p^{-}$ (² D) $4t^{1}$	°G Iъ	2	10 335 134.	$21\% + 18\% 2s^{-2} 2p^{-3} (^{2}D) 4I^{+1}H + 18\% 2s^{-2} 2p^{-3} (^{2}D) 5g^{+3}H$
552 552	$2s^{-} 2p^{-} (^{2}D) 4f^{-}$	•D 3г	2	10 336 255.	$45\% + 20\% 2s^{-} 2p^{-} (^{-}D) 3g^{-} ^{-}D + 15\% 2s^{-} 2p^{-} (^{-}D) 3g^{+} ^{-}D$
553	2s ⁺ 2p ⁺ (² D) 4f ⁺	F	3	10 336 325.	$27\% + 25\% 2s^{-} 2p^{-} (^{2}D) 4f^{-} F + 20\% 2s^{-} 2p^{-} (^{2}D) 5g^{-} 5D$

Table 1. continued.

Index	Configuration	LS	J	$E ({\rm cm}^{-1})$	Composition
554	$2s^{1} 2p^{4} (^{2}D) 4f^{1}$	^{1}P	1	10 337 672.	$43\% + 43\% 2s^{1} 2p^{4} (^{2}D) 4f^{1} {}^{3}P$
555	$2s^{1} 2p^{4} (^{2}D) 4f^{1}$	³ G	3	10 339 833.	$47\% + 18\% 2s^{1} 2p^{4} (^{2}D) 4f^{1} F + 13\% 2s^{2} 2p^{3} (^{2}D) 5g^{1} G$
556	$2s^{1} 2p^{4} (^{2}D) 4f^{1}$	³ G	4	10 340 509.	$27\% + 25\% 2s^{1} 2p^{4} (^{2}D) 4f^{1} {}^{3}F + 24\% 2s^{1} 2p^{4} (^{2}D) 4f^{1} {}^{1}G$
557	$2s^2 2p^3$ (² D) $5f^1$	$^{1}\mathrm{H}$	5	10 342 085.	$51\% + 48\% 2s^2 2p^3 (^2D) 5f^{1-3}H$
558	$2s^2 2p^3 (^2D) 5f^1$	^{3}H	6	10 342 468.	100%
559	$2s^2 2p^3$ (² D) $5f^1$	^{1}P	1	10 343 155.	$52\% + 33\% 2s^2 2p^3 (^2D) 5f^{1} {}^{3}P + 13\% 2s^2 2p^3 (^2D) 5f^{1} {}^{3}D$
560	2s ² 2p ³ (² D) 5f ¹	³ G	4	10 343 456.	$53\% + 21\% 2s^2 2p^3 (^2D) 5f^{1} G + 18\% 2s^2 2p^3 (^2D) 5f^{1} F$
561	2s ² 2p ³ (² D) 5f ¹	^{3}P	0	10 343 465.	98%
562	2s ² 2p ³ (² D) 5f ¹	³ G	5	10 343 558.	88%
563	2s ² 2p ³ (² D) 5f ¹	³ D	1	10 343 569.	$50\% + 45\% 2s^2 2p^3 (^2D) 5f^{1-3}P$
564	2s ² 2p ³ (² D) 5f ¹	³ D	2	10 343 788.	$59\% + 20\% 2s^2 2p^3 (^2D) 5f^{1} {}^{3}P + 17\% 2s^2 2p^3 (^2D) 5f^{1} {}^{3}F$
565	2s ² 2p ³ (² D) 5f ¹	³ F	3	10 343 793.	$54\% + 18\% \ 2s^2 \ 2p^3 \ (^2D) \ 5f^{1-3}G + 14\% \ 2s^2 \ 2p^3 \ (^2D) \ 5f^{1-3}D$
566	2s ² 2p ³ (² D) 5f ¹	^{1}D	2	10 344 015.	$58\% + 26\% 2s^2 2p^3 (^2D) 5f^{1} {}^3F + 15\% 2s^2 2p^3 (^2D) 5f^{1} {}^3P$
567	$2s^2 \ 2p^3 \ (^2D) \ 5f^1$	$^{1}\mathrm{F}$	3	10 344 587.	$50\% + 40\% 2s^2 2p^3 (^2D) 5f^{1-3}D$
568	$2s^2 \ 2p^3 \ (^2D) \ 5f^1$	³ F	4	10 344 621.	$54\% + 41\% 2s^2 2p^3 (^2D) 5f^{1-1}G$
569	$2s^2 2p^3 (^2D) 5g^1$	${}^{1}\mathbf{I}$	6	10 346 236.	$54\% + 46\% 2s^2 2p^3 (^2D) 5g^{1-3}I$
570	$2s^2 2p^3 (^2D) 5g^1$	^{3}I	7	10 346 531.	100%
571	$2s^2 2p^3 (^2D) 5g^1$	³ D	1	10 348 797.	$53\% + 29\% \ 2s^1 \ 2p^4 \ (^2D) \ 4f^{1 \ 3}D + 14\% \ 2s^1 \ 2p^4 \ (^2D) \ 4f^{1 \ 1}P$
572	$2s^2 \; 2p^3 \; (^2D) \; 5g^1$	³ D	2	10 348 904.	$36\% + 20\% \ 2s^1 \ 2p^4 \ (^2D) \ 4f^{1 \ 3}D + 18\% \ 2s^2 \ 2p^3 \ (^2D) \ 5g^{1 \ 1}D$
573	$2s^1 \ 2p^4 \ (^2D) \ 4f^1$	³ D	3	10 354 200.	$24\% + 23\% \ 2s^2 \ 2p^3 \ (^2D) \ 5g^1 \ ^3F + 20\% \ 2s^1 \ 2p^4 \ (^2D) \ 4f^1 \ ^3F$
574	$2s^2 \; 2p^3 \; (^2D) \; 5g^1$	^{3}F	2	10 354 400.	$31\% + 25\% \ 2s^1 \ 2p^4 \ (^2D) \ 4f^{1-3}F + 23\% \ 2s^1 \ 2p^4 \ (^2D) \ 4f^{1-1}D$
575	$2s^2 \; 2p^3 \; (^2D) \; 5g^1$	$^{1}\mathrm{H}$	5	10 354 480.	$29\% + 26\% \ 2s^2 \ 2p^3 \ (^2D) \ 5g^1 \ ^3H + 20\% \ 2s^1 \ 2p^4 \ (^2D) \ 4f^1 \ ^1H$
576	$2s^2 \; 2p^3 \; (^2D) \; 5g^1$	$^{3}\mathrm{H}$	6	10 354 694.	$55\% + 34\% 2s^1 2p^4 (^2D) 4f^{1-3}H$
577	$2s^1 \ 2p^4 \ (^2D) \ 4f^1$	³ F	4	10 358 277.	$35\% + 21\% \ 2s^2 \ 2p^3 \ (^2D) \ 5g^1 \ ^3G + 19\% \ 2s^1 \ 2p^4 \ (^2D) \ 4f^1 \ ^3G$
578	$2s^1 \ 2p^4 \ (^2D) \ 4f^1$	${}^{1}\mathrm{F}$	3	10 358 576.	$31\% + 20\% \ 2s^2 \ 2p^3 \ (^2D) \ 5g^{1 \ 3}G + 15\% \ 2s^2 \ 2p^3 \ (^2D) \ 5g^{1 \ 1}F$
579	$2s^1 \; 2p^4 \; (^2P) \; 4p^1$	^{3}P	2	10 359 199.	$46\% + 22\% \ 2s^2 \ 2p^3 \ (^2P) \ 5s^{1 \ 3}P + 15\% \ 2s^{1} \ 2p^4 \ (^2P) \ 4p^{1 \ 3}D$
580	$2s^1 \ 2p^4 \ (^2D) \ 4f^1$	$^{1}\mathrm{G}$	4	10 359 518.	$37\% + 24\% \ 2s^2 \ 2p^3 \ (^2D) \ 5g^{1-1}G + 11\% \ 2s^2 \ 2p^3 \ (^2D) \ 5g^{1-3}H$
581	$2s^1 2p^4 (^2D) 4f^1$	³ G	5	10 359 534.	$49\% + 32\% 2s^2 2p^3 (^2D) 5g^{1-3}G$
582	$2s^2 \ 2p^3 \ (^2P) \ 5p^1$	³ D	1	10 359 975.	$45\% + 21\% \ 2s^2 \ 2p^3 \ (^2P) \ 5p^{1-1}P + 17\% \ 2s^1 \ 2p^4 \ (^2P) \ 4s^{1-3}P$
583	$2s^2 \ 2p^3 \ (^2P) \ 5p^1$	³ D	1	10 362 948.	$33\% + 26\% \ 2s^1 \ 2p^4 \ (^2P) \ 4s^{1 \ 3}P + 18\% \ 2s^1 \ 2p^4 \ (^2P) \ 4s^{1 \ 1}P$
584	$2s^1 2p^4 (^2P) 4s^1$	³ P	0	10 366 419.	$42\% + 31\% \ 2s^2 \ 2p^3 \ (^2P) \ 5p^{1-3}P + 15\% \ 2s^{1-}2p^4 \ (^2S) \ 4s^{1-1}S$
585	2s ² 2p ³ (² P) 5s ¹	^{1}P	1	10 368 739.	$35\% + 17\% 2s^{1} 2p^{4} (^{2}P) 4p^{1} {}^{3}P + 12\% 2s^{2} 2p^{3} (^{2}D) 5s^{1} {}^{3}D$
586	$2s^1 \ 2p^4 \ (^2P) \ 4p^1$	^{1}D	2	10 370 110.	$35\% + 31\% \ 2s^1 \ 2p^4 \ (^2P) \ 4p^{1 \ 3}D + 21\% \ 2s^2 \ 2p^3 \ (^2P) \ 5s^{1 \ 3}P$
587	2s ² 2p ³ (² P) 5p ¹	³ D	2	10 370 257.	$56\% + 27\% 2s^2 2p^3 (^2P) 5p^{1-1}D + 15\% 2s^2 2p^3 (^2P) 5p^{1-3}P$
588	2s ² 2p ³ (² P) 5p ¹	³ P	1	10 371 431.	$37\% + 37\% 2s^2 2p^3 (^2P) 5p^{1-3}S + 13\% 2s^2 2p^3 (^2P) 5p^{1-1}P$
589	$2s^1 2p^4 (^2P) 4p^1$	³ D	3	10 373 917.	93%
590	$2s^1 2p^4 (^2P) 4p^1$	^{3}S	1	10 379 297.	$28\% + 27\% \ 2s^1 \ 2p^4 \ (^2P) \ 4p^{1 \ 3}P + 14\% \ 2s^2 \ 2p^3 \ (^2P) \ 5s^{1 \ 1}P$
591	2s ² 2p ³ (² P) 5p ¹	³ P	0	10 379 724.	$43\% + 30\% 2s^{1} 2p^{4} (^{2}P) 4s^{1} {}^{3}P + 15\% 2s^{2} 2p^{3} (^{2}P) 5p^{1} {}^{1}S$
592	$2s^1 2p^4 (^2P) 4p^1$	³ P	2	10 380 073.	$34\% + 31\% 2s^2 2p^3 (^2P) 5s^{1} {}^{3}P + 23\% 2s^{1} 2p^4 (^2P) 4p^{1} {}^{1}D$
593	$2s^1 2p^4 (^2P) 4p^1$	1 S	0	10 382 688.	$60\% + 31\% 2s^1 2p^4 (^2P) 4p^{1-3}P$
594	$2s^1 2p^4 (^2P) 4p^1$	^{1}P	1	10 400 286.	$40\% + 25\% \ 2s^1 \ 2p^4 \ (^2P) \ 4p^{1-3}D + 22\% \ 2s^1 \ 2p^4 \ (^2P) \ 4p^{1-3}S$
595	$2s^2 \ 2p^3 \ (^2P) \ 5d^1$	³ F	2	10 420 442.	$75\% + 20\% 2s^2 2p^3 (^2P) 5d^{1-1}D$
596	$2s^2 \ 2p^3 \ (^2P) \ 5p^1$	³ D	3	10 420 563.	$54\% + 21\% 2s^1 2p^4 (^2S) 4d^{1-3}D$
597	$2s^2 \; 2p^3 \; (^2P) \; 5p^1$	^{1}D	2	10 422 521.	$31\% + 21\% 2s^1 2p^4 (^2S) 4d^{1 3}D + 17\% 2s^2 2p^3 (^2P) 5p^{1 3}D$

Table 1. continued.

Index	Configuration	LS	J	$E ({\rm cm}^{-1})$	Composition
598	$2s^{1} 2p^{4} (^{2}S) 4d^{1}$	³ D	1	10 422 969.	$27\% + 27\% 2s^2 2p^3 (^2P) 5p^{1-3}P + 12\% 2s^2 2p^3 (^2P) 5p^{1-1}P$
599	$2s^2 2p^3 (^2P) 5d^1$	^{3}P	2	10 424 370.	$47\% + 35\% 2s^2 2p^3 (^2P) 5d^{13}D + 15\% 2s^2 2p^3 (^2P) 5d^{11}D$
600	$2s^2 2p^3 (^2P) 5d^1$	³ F	3	10 425 385.	$51\% + 26\% 2s^2 2p^3 (^2P) 5d^{1}F + 22\% 2s^2 2p^3 (^2P) 5d^{1}^3D$
601	$2s^2 2p^3 (^2P) 5p^1$	${}^{3}S$	1	10 426 717.	$33\% + 20\% 2s^{1} 2p^{4} (^{2}S) 4d^{1} {}^{3}D + 11\% 2s^{2} 2p^{3} (^{2}P) 5p^{1} {}^{3}P$
602	$2s^{1} 2p^{4} (^{2}S) 4d^{1}$	³ D	3	10 426 905.	$46\% + 21\% 2s^2 2p^3 (^2P) 5p^{1/3}D$
603	$2s^1 2p^4 (^2S) 4d^1$	³ D	2	10 428 613.	$43\% + 13\% 2s^2 2p^3 (^2P) 5p^{1-1}D + 11\% 2s^2 2p^3 (^2P) 5p^{1-3}D$
604	2s ² 2p ³ (² P) 5p ¹	$^{1}\mathbf{P}$	1	10 429 637.	$29\% + 24\% 2s^{1} 2p^{4} (^{2}S) 4d^{1} {}^{3}D + 11\% 2s^{2} 2p^{3} (^{2}P) 5p^{1} {}^{3}D$
605	2s ² 2p ³ (² P) 5d ¹	³ D	1	10 429 724.	$55\% + 26\% 2s^2 2p^3 (^2P) 5d^{1-1}P + 18\% 2s^2 2p^3 (^2P) 5d^{1-3}P$
606	2s ² 2p ³ (² P) 5p ¹	^{3}P	2	10430477.	$59\% + 13\% 2s^2 2p^3 (^2P) 5p^{1-1}D + 10\% 2s^2 2p^3 (^2D) 5p^{1-3}D$
607	2s1 2p4 (2S) 4d1	^{1}D	2	10436717.	$57\% + 11\% 2s^1 2p^4 (^2P) 4d^{1-3}D$
608	2s ² 2p ³ (² P) 5g ¹	³ G	3	10 447 756.	$36\% + 27\% 2s^2 2p^3 (^2P) 5g^{1-1}F + 21\% 2s^2 2p^3 (^2P) 5g^{1-3}F$
609	2s ² 2p ³ (² P) 5g ¹	³ F	4	10 447 947.	$48\% + 20\% \ 2s^2 \ 2p^3 \ (^2P) \ 5g^{1-3}G + 16\% \ 2s^2 \ 2p^3 \ (^2P) \ 5g^{1-1}G$
610	2s ² 2p ³ (² P) 5p ¹	^{1}S	0	10 450 062.	$61\% + 17\% 2s^2 2p^3 (^2D) 5p^{1 \ 3}P + 16\% 2s^2 2p^3 (^2P) 5p^{1 \ 3}P$
611	$2s^2 \; 2p^3 \; (^2P) \; 5f^1$	^{3}G	3	10 450 314.	$71\% + 16\% \ 2s^2 \ 2p^3 \ (^2P) \ 5f^{1-1}F + 10\% \ 2s^2 \ 2p^3 \ (^2P) \ 5f^{1-3}F$
612	$2s^2 \; 2p^3 \; (^2P) \; 5f^1$	^{3}G	4	10 451 425.	$40\% + 31\% \ 2s^2 \ 2p^3 \ (^2P) \ 5f^{1-1}G + 26\% \ 2s^2 \ 2p^3 \ (^2P) \ 5f^{1-3}F$
613	$2s^2 \ 2p^3 \ (^2P) \ 5g^1$	$^{3}\mathrm{H}$	4	10 454 443.	$70\% + 15\% \ 2s^2 \ 2p^3 \ (^2P) \ 5g^{1-1}G + 13\% \ 2s^2 \ 2p^3 \ (^2P) \ 5g^{1-3}G$
614	$2s^2 \; 2p^3 \; (^2P) \; 5f^1$	^{3}F	2	10 454 534.	$41\% + 27\% \ 2s^2 \ 2p^3 \ (^2P) \ 5f^{1-1}D + 18\% \ 2s^2 \ 2p^3 \ (^2P) \ 5f^{1-3}D$
615	$2s^2 \ 2p^3 \ (^2P) \ 5g^1$	$^{3}\mathrm{H}$	5	10 454 770.	$38\% + 32\% \ 2s^2 \ 2p^3 \ (^2P) \ 5g^{1-1}H + 28\% \ 2s^2 \ 2p^3 \ (^2P) \ 5g^{1-3}G$
616	$2s^2 \; 2p^3 \; (^2P) \; 5f^1$	³ D	3	10 454 778.	$46\% + 25\% \ 2s^2 \ 2p^3 \ (^2P) \ 5f^{1 \ 3}F + 17\% \ 2s^2 \ 2p^3 \ (^2P) \ 5f^{1 \ 1}F$
617	$2s^1 \; 2p^4 \; (^2P) \; 4p^1$	^{3}P	0	10 460 637.	$41\% + 26\% \ 2s^1 \ 2p^4 \ (^2P) \ 4p^{1-1}S + 19\% \ 2s^1 \ 2p^4 \ (^2S) \ 4p^{1-3}P$
618	$2s^1 \; 2p^4 \; (^2P) \; 4p^1$	³ D	1	10 467 129.	$39\% + 22\% \ 2s^1 \ 2p^4 \ (^2P) \ 4p^{1 \ 3}P + 22\% \ 2s^1 \ 2p^4 \ (^2S) \ 4p^{1 \ 1}P$
619	$2s^1 \; 2p^4 \; (^2P) \; 4p^1$	³ D	2	10 468 314.	$31\% + 23\% \ 2s^1 \ 2p^4 \ (^2P) \ 4p^{1-1}D + 16\% \ 2s^1 \ 2p^4 \ (^2S) \ 4p^{1-3}P$
620	$2s^1 \; 2p^4 \; (^2P) \; 4d^1$	³ D	3	10 474 187.	$70\% + 19\% 2s^1 2p^4 (^2P) 4d^{1-3}F$
621	$2s^2 \ 2p^3 \ (^2P) \ 5d^1$	^{3}P	1	10 476 006.	$43\% + 15\% 2s^1 2p^4 (^2P) 4p^{1-1}P$
622	$2s^2 \ 2p^3 \ (^2P) \ 5d^1$	³ F	4	10 477 716.	77%
623	$2s^1 \ 2p^4 \ (^2P) \ 4d^1$	³ D	2	10 478 516.	$56\% + 25\% 2s^1 2p^4 (^2P) 4d^{1-3}P$
624	$2s^1 \; 2p^4 \; (^2S) \; 4f^1$	³ F	2	10 480 616.	74%
625	$2s^2 \ 2p^3 \ (^2P) \ 5d^1$	^{3}P	0	10 480 749.	$67\% + 11\% 2s^2 2p^3 (^2D) 5d^{13}P$
626	$2s^1 2p^4 (^2P) 4d^1$	^{1}F	3	10 480 822.	$56\% + 30\% 2s^1 2p^4 (^2P) 4d^{1-3}F$
627	$2s^1 2p^4 (^2P) 4d^1$	³ F	4	10 480 874.	89%
628	$2s^2 2p^3 (^2P) 5d^1$	^{1}D	2	10 481 403.	$34\% + 24\% 2s^2 2p^3 (^2P) 5d^{1-3}P$
629	$2s^1 2p^4 (^2S) 4f^1$	³ F	3	10 482 445.	$51\% + 15\% 2s^1 2p^4 (^2S) 4f^{1-1}F$
630	$2s^2 \ 2p^3 \ (^2P) \ 5d^1$	${}^{1}F$	3	10 483 129.	$50\% + 14\% \ 2s^2 \ 2p^3 \ (^2P) \ 5d^{1-3}F + 13\% \ 2s^2 \ 2p^3 \ (^2D) \ 5d^{1-3}G$
631	2s ² 2p ³ (² P) 5d ¹	³ D	3	10 484 212.	$56\% + 20\% 2s^2 2p^3 (^2P) 5d^{1-3}F$
632	$2s^1 2p^4 (^2P) 4d^1$	³ P	1	10 485 268.	$47\% + 37\% 2s^1 2p^4 (^2P) 4d^{1 3}D$
633	$2s^1 2p^4 (^2P) 4p^1$	^{1}P	1	10 485 769.	$29\% + 17\% 2s^2 2p^3 (^2P) 5d^{1 3}P + 11\% 2s^1 2p^4 (^2S) 4p^{1 3}P$
634	2s ² 2p ³ (² P) 5d ¹	³ D	2	10 485 890.	$42\% + 12\% 2s^2 2p^3 (^2P) 5d^{1-1}D + 12\% 2s^2 2p^3 (^2P) 5d^{1-3}F$
635	$2s^1 2p^4 (^2S) 4f^1$	³ F	4	10 488 084.	64%
636	$2s^1 2p^4 (^2S) 4f^1$	^{1}F	3	10 489 009.	$46\% + 16\% 2s^1 2p^4 (^2S) 4f^{1\ 3}F + 12\% 2s^1 2p^4 (^2P) 4f^{1\ 3}G$
637	$2s^1 2p^4 (^2P) 4d^1$	^{3}P	0	10 491 547.	92%
638	$2s^2 2p^3 (^2P) 5d^1$	^{1}P	1	10 497 559.	$56\% + 17\% 2s^2 2p^3 (^2P) 5d^{1-3}D$
639	$2s^1 2p^4 (^2P) 4d^1$	^{1}P	1	10 497 742.	$39\% + 31\% \ 2s^1 \ 2p^4 \ (^2P) \ 4d^{1 \ 3}P + 11\% \ 2s^1 \ 2p^4 \ (^2P) \ 4d^{1 \ 3}D$
640	$2s^1 2p^4 (^2P) 4d^1$	1 D	2	10 499 657.	$38\% + 19\% \ 2s^1 \ 2p^4 \ (^2P) \ 4d^{1 \ 3}F + 12\% \ 2s^1 \ 2p^4 \ (^2P) \ 4d^{1 \ 3}P$
641	$2s^2 \ 2p^3 \ (^2P) \ 5g^1$	³ F	2	10 507 602.	70%

V. Jonauskas et al.: Transition rates for Fe xix, Online Material p 16

Table	1.	continued.

Index	Configuration	LS	J	$E ({\rm cm}^{-1})$	Composition
642	2s ² 2p ³ (² P) 5f ¹	³ D	1	10 507 743.	$64\% + 14\% 2s^1 2p^4 (^2P) 4d^{1 1}P$
643	2s ² 2p ³ (² P) 5f ¹	^{3}D	2	10 507 905.	$55\% + 15\% 2s^2 2p^3 (^2P) 5f^{1 \ 1}D$
644	2s ² 2p ³ (² P) 5g ¹	${}^{3}F$	3	10 508 008.	$44\% + 26\% \ 2s^2 \ 2p^3 \ (^2P) \ 5g^{1-1}F + 12\% \ 2s^2 \ 2p^3 \ (^2D) \ 5g^{1-3}D$
645	2s ² 2p ³ (² P) 5f ¹	³ G	5	10 508 859.	77%
646	2s ² 2p ³ (² P) 5f ¹	^{1}G	4	10 508 984.	$39\% + 37\% 2s^2 2p^3 (^2P) 5f^{1\ 3}G + 17\% 2s^2 2p^3 (^2D) 5f^{1\ 3}H$
647	$2s^2 \ 2p^3 \ (^2P) \ 5g^1$	³ G	3	10 509 630.	$36\% + 22\% 2s^2 2p^3 (^2P) 5g^{1-1}F$
648	$2s^2 \ 2p^3 \ (^2P) \ 5g^1$	³ F	4	10 509 853.	$30\% + 22\% \ 2s^2 \ 2p^3 \ (^2P) \ 5g^{1 \ 3}G + 15\% \ 2s^2 \ 2p^3 \ (^2P) \ 5g^{1 \ 1}G$
649	2s ² 2p ³ (² P) 5f ¹	^{3}D	3	10 510 502.	$36\% + 24\% \ 2s^2 \ 2p^3 \ (^2P) \ 5f^{1 \ 3}F + 14\% \ 2s^2 \ 2p^3 \ (^2P) \ 5f^{1 \ 1}F$
650	$2s^2 \ 2p^3 \ (^2P) \ 5g^1$	^{1}G	4	10 511 681.	$27\% + 23\% \ 2s^2 \ 2p^3 \ (^2P) \ 5g^{1 \ 3}H + 19\% \ 2s^2 \ 2p^3 \ (^2P) \ 5g^{1 \ 3}G$
651	$2s^2 \ 2p^3 \ (^2P) \ 5g^1$	^{3}G	5	10 512 008.	$46\% + 14\% 2s^2 2p^3 (^2P) 5g^{1-3}H$
652	2s ² 2p ³ (² P) 5f ¹	$^{1}\mathrm{F}$	3	10 512 443.	$34\% + 22\% \ 2s^2 \ 2p^3 \ (^2P) \ 5f^{1 \ 3}F + 18\% \ 2s^2 \ 2p^3 \ (^2P) \ 5f^{1 \ 3}G$
653	2s ² 2p ³ (² P) 5f ¹	³ F	4	10 512 897.	$55\% + 12\% 2s^2 2p^3 (^2P) 5f^{1-1}G$
654	2s ² 2p ³ (² P) 5g ¹	$^{1}\mathrm{H}$	5	10 513 496.	$43\% + 33\% 2s^2 2p^3 (^2P) 5g^{1}{}^{3}H + 17\% 2s^2 2p^3 (^2D) 5g^{1}{}^{3}I$
655	2s ² 2p ³ (² P) 5f ¹	1 D	2	10 513 649.	$28\% + 27\% 2s^2 2p^3 (^2P) 5f^{1}{}^3F + 13\% 2s^1 2p^4 (^2P) 4d^{1}{}^1D$
656	2s ² 2p ³ (² P) 5g ¹	$^{3}\mathrm{H}$	6	10 513 782.	76%

Table 5. Calculated energy levels of Fe xix (in cm⁻¹) relative to the ground energy with spectroscopic notations. The five major spontaneous radiative transition probabilities A^r (in s⁻¹) from each level are given. Arrow marks the final level to which radiative transition happens from the level. The sum of all radiative probabilities from the corresponding level is given in the last column.

Index	A^{r} (s ⁻¹)	final	$\Sigma A^r (s^{-1})$								
1110011		level									
2	5.09E-01	$\rightarrow 1$									5.09E-01
3	1.42E+04	$\rightarrow 1$	3.44E+01	$\rightarrow 2$							1.43E+04
4	1.69E+04	$\rightarrow 1$	6.99E+02	$\rightarrow 3$	7.70E-02	$\rightarrow 2$					1.76E+04
5	1.39E+05	$\rightarrow 3$	4.83E+01	$\rightarrow 4$	9.05E+00	$\rightarrow 1$					1.39E+05
6	3.57E+10	$\rightarrow 1$	9.60E+09	$\rightarrow 3$	1.95E+09	$\rightarrow 4$	7.14E+01	$\rightarrow 2$	5.91E+00	$\rightarrow 5$	4.73E+10
7	2.91E+10	$\rightarrow 1$	1.49E+10	$\rightarrow 2$	1.16E+10	$\rightarrow 3$	6.35E+08	$\rightarrow 5$	7.58E+06	$\rightarrow 4$	5.62E+10
8	5.57E+10	$\rightarrow 3$	4.67E+03	$\rightarrow 7$	3.71E+02	$\rightarrow 4$	9.62E+01	$\rightarrow 1$	2.19E+00	$\rightarrow 6$	5.57E+10
9	1.42E+11	$\rightarrow 4$	1.15E+10	$\rightarrow 1$	1.03E+10	$\rightarrow 5$	1.35E+09	$\rightarrow 2$	8.41E+08	$\rightarrow 3$	1.66E+11
10	1.50E+11	$\rightarrow 9$	1.06E+10	$\rightarrow 7$	6.50E+05	$\rightarrow 4$	9.27E+04	$\rightarrow 1$	2.17E+04	$\rightarrow 3$	1.60E+11
11	1.07E+11	$\rightarrow 1$	3.64E+09	$\rightarrow 3$	3.10E+08	$\rightarrow 4$	3.16E+05	$\rightarrow 6$	1.28E+05	$\rightarrow 7$	1.11E+11
12	2.34E+12	$\rightarrow 1$	6.03E+11	$\rightarrow 3$	4.96E+11	$\rightarrow 2$	2.18E+10	$\rightarrow 4$	1.93E+08	$\rightarrow 5$	3.46E+12
13	9.53E+11	$\rightarrow 1$	2.65E+11	$\rightarrow 3$	1.05E+11	$\rightarrow 4$	5.43E+06	$\rightarrow 6$	6.10E+05	$\rightarrow 8$	1.32E+12
14	1.21E+12	$\rightarrow 3$	1.99E+11	$\rightarrow 2$	1.38E+11	$\rightarrow 4$	1.98E+10	$\rightarrow 5$	2.72E+09	$\rightarrow 1$	1.57E+12
15	1.11E+12	$\rightarrow 1$	1.05E+11	$\rightarrow 4$	5.41E+06	$\rightarrow 6$	2.32E+06	$\rightarrow 7$	8.25E+04	$\rightarrow 3$	1.21E+12
16	2.16E+12	$\rightarrow 4$	2.76E+11	$\rightarrow 3$	1.27E+11	$\rightarrow 1$	3.44E+06	$\rightarrow 9$	1.03E+06	$\rightarrow 7$	2.57E+12
17	2.67E+09	$\rightarrow 11$	1.97E+09	$\rightarrow 6$	7.24E+08	$\rightarrow 7$	2.79E+08	$\rightarrow 8$	2.67E+08	$\rightarrow 1$	6.00E+09
18	2.63E+09	$\rightarrow 11$	8.43E+08	$\rightarrow 7$	3.99E+08	$\rightarrow 1$	1.44E+08	$\rightarrow 12$	1.43E+08	$\rightarrow 9$	4.40E+09
19	3.76E+09	$\rightarrow 11$	1.15E+09	$\rightarrow 6$	1.00E+08	$\rightarrow 1$	6.54E+06	$\rightarrow 3$	3.56E+05	$\rightarrow 4$	5.02E+09
20	1.11E+12	$\rightarrow 3$	6.73E+06	$\rightarrow 6$	5.22E+05	$\rightarrow 4$	8.35E+04	$\rightarrow 1$	2.81E+04	$\rightarrow 12$	1.11E+12
21	7.21E+11	$\rightarrow 2$	5.05E+11	$\rightarrow 4$	1.84E+11	$\rightarrow 3$	9.60E+10	$\rightarrow 1$	4.96E+10	$\rightarrow 5$	1.56E+12
22	4.19E+09	$\rightarrow 6$	2.52E+09	$\rightarrow 12$	2.03E+09	$\rightarrow 1$	2.79E+08	$\rightarrow 11$	2.76E+08	$\rightarrow 7$	9.70E+09
23	2.83E+09	$\rightarrow 12$	1.63E+09	$\rightarrow 7$	9.63E+08	$\rightarrow 1$	7.38E+08	$\rightarrow 11$	6.64E+08	$\rightarrow 9$	8.02E+09
24	3.44E+09	$\rightarrow 12$	2.90E+09	$\rightarrow 1$	9.94E+08	$\rightarrow 9$	1.62E+08	$\rightarrow 4$	1.42E+08	$\rightarrow 14$	7.66E+09
25	6.58E+11	$\rightarrow 3$	6.49E+11	$\rightarrow 4$	1.25E+11	$\rightarrow 1$	2.26E+06	$\rightarrow 7$	2.20E+06	$\rightarrow 8$	1.43E+12
26	1.37E+12	$\rightarrow 5$	9.96E+11	$\rightarrow 4$	5.13E+10	$\rightarrow 2$	2.37E+10	$\rightarrow 3$	2.17E+10	$\rightarrow 1$	2.46E+12
27	6.54E+09	$\rightarrow 6$	2.37E+09	$\rightarrow 7$	2.34E+09	$\rightarrow 9$	1.21E+09	$\rightarrow 13$	6.04E+08	$\rightarrow 4$	1.47E+10
28	1.40E+09	$\rightarrow 13$	9.57E+08	$\rightarrow 9$	8.47E+08	$\rightarrow 3$	8.31E+08	$\rightarrow 14$	4.35E+08	$\rightarrow 6$	5.23E+09
29	6.01E+09	$\rightarrow 6$	2.39E+09	$\rightarrow 14$	2.33E+09	$\rightarrow 7$	6.95E+08	$\rightarrow 13$	5.62E+08	$\rightarrow 9$	1.33E+10
30	2.31E+09	$\rightarrow 13$	1.13E+09	$\rightarrow 1$	9.15E+08	$\rightarrow 15$	6.17E+08	$\rightarrow 6$	1.98E+08	$\rightarrow 3$	5.20E+09
31	7.15E+09	$\rightarrow 9$	5.32E+09	$\rightarrow 6$	1.58E+09	$\rightarrow 7$	1.27E+09	$\rightarrow 14$	1.13E+09	$\rightarrow 16$	1.82E+10
32	1.32E+10	$\rightarrow 6$	1.58E+09	$\rightarrow 13$	1.26E+09	$\rightarrow 15$	9.57E+08	$\rightarrow 4$	4.14E+08	$\rightarrow 16$	1.75E+10
33	2.40E+09	$\rightarrow 16$	1.59E+09	$\rightarrow 6$	1.13E+09	$\rightarrow 4$	5.25E+08	$\rightarrow 15$	4.36E+08	$\rightarrow 3$	6.45E+09
34	4.12E+09	$\rightarrow 15$	1.27E+09	$\rightarrow 1$	1.25E+08	$\rightarrow 4$	1.17E+03	$\rightarrow 19$	7.78E+02	$\rightarrow 30$	5.52E+09
35	6.78E+10	$\rightarrow 7$	5.70E+09	$\rightarrow 14$	3.36E+09	$\rightarrow 12$	1.08E+09	$\rightarrow 9$	4.89E+08	$\rightarrow 1$	7.85E+10
36	6.56E+10	$\rightarrow 6$	4.71E+09	$\rightarrow 7$	3.68E+09	$\rightarrow 8$	3.00E+09	$\rightarrow 13$	2.55E+09	$\rightarrow 14$	8.31E+10
37	1.08E+11	$\rightarrow 6$	3.33E+10	$\rightarrow 7$	5.06E+09	$\rightarrow 15$	5.01E+09	$\rightarrow 12$	1.71E+09	$\rightarrow 13$	1.54E+11
38	1.41E+10	$\rightarrow 8$	1.13E+10	$\rightarrow 9$	6.46E+09	$\rightarrow 7$	2.32E+09	$\rightarrow 6$	1.43E+09	$\rightarrow 21$	3.84E+10
39	2.36E+10	$\rightarrow 9$	6.01E+09	$\rightarrow 16$	4.67E+09	$\rightarrow 6$	1.65E+09	$\rightarrow 4$	7.95E+08	$\rightarrow 7$	3.91E+10
40	4.23E+10	$\rightarrow 1$	4.52E+09	$\rightarrow 4$	3.70E+09	$\rightarrow 18$	1.46E+09	$\rightarrow 19$	2.88E+07	$\rightarrow 23$	5.20E+10
41	2.50E+11	$\rightarrow 1$	2.88E+10	$\rightarrow 3$	3.00E+09	$\rightarrow 18$	2.10E+09	$\rightarrow 17$	1.22E+09	$\rightarrow 4$	2.85E+11
42	1.67E+11	$\rightarrow 3$	5.54E+09	$\rightarrow 17$	1.62E+08	$\rightarrow 22$	4.96E+06	$\rightarrow 6$	1.58E+05	$\rightarrow 1$	1.72E+11
43	2.42E+10	$\rightarrow 6$	1.44E+10	$\rightarrow 8$	7.06E+09	$\rightarrow 7$	6.87E+09	$\rightarrow 9$	2.40E+09	$\rightarrow 20$	5.73E+10
44	2.62E+11	$\rightarrow 1$	4.89E+10	$\rightarrow 2$	4.66E+10	$\rightarrow 3$	4.20E+09	$\rightarrow 17$	2.25E+09	$\rightarrow 4$	3.66E+11
45	1.85E+10	$\rightarrow 7$	5.29E+09	$\rightarrow 6$	3.46E+09	$\rightarrow 21$	9.50E+08	$\rightarrow 9$	7.94E+08	$\rightarrow 2$	3.00E+10
46	4.72E+09	$\rightarrow 19$	6.92E+06	$\rightarrow 1$	1.89E+06	$\rightarrow 6$	1.36E+05	$\rightarrow 11$	5.55E+04	$\rightarrow 34$	4.72E+09
47	7.02E+10	$\rightarrow 7$	2.30E+10	$\rightarrow 8$	6.88E+09	$\rightarrow 6$	1.58E+09	$\rightarrow 12$	1.31E+09	$\rightarrow 26$	1.08E+11
48	2.05E+10	$\rightarrow 6$	3.58E+09	$\rightarrow 25$	7.18E+08	$\rightarrow 3$	4.75E+08	$\rightarrow 4$	2.86E+08	$\rightarrow 15$	2.56E+10
49	6.60E+10	$\rightarrow 7$	1.19E+10	$\rightarrow 9$	6.40E+09	$\rightarrow 21$	4.42E+09	$\rightarrow 12$	3.26E+08	$\rightarrow 4$	8.94E+10
50	1.85E+12	$\rightarrow 1$	1.34E+12	$\rightarrow 3$	8.03E+10	$\rightarrow 4$	3.83E+09	$\rightarrow 22$	1.02E+09	$\rightarrow 23$	3.28E+12

Table 5. continued.

Index	Δ^r (s ⁻¹)	final	A^r (s ⁻¹)	final	A^r (s ⁻¹)	final	A^r (s ⁻¹)	final	A^r (s ⁻¹)	final	$\sum \Delta^r (s^{-1})$
mucx	A (8)	level	А (8)	level	А (8)	level	А (8)	level	А (8)	level	$\sum A(s)$
51	2/15E±10		8 57E±00		8 21E±00		2.01E±00		1 06F±00	$\rightarrow 26$	/ 80F±10
52	2.45E+10 3.81E+12	$\rightarrow 0$ $\rightarrow 2$	1.73E+09	\rightarrow 3	2.212+09 2.48E+11	$\rightarrow 0$ $\rightarrow 1$	$5.41E \pm 10$	$\rightarrow 23$ $\rightarrow 4$	$2.64E\pm00$	$\rightarrow 20$ $\rightarrow 24$	$4.85E \pm 10$
53	5.01E + 12 5.80E + 12	$\rightarrow 2$ $\rightarrow 1$	$6.58E \pm 10$	$\rightarrow 3$ $\rightarrow 4$	2.401 ± 11	\rightarrow 1 \rightarrow 23	3.50E±08	\rightarrow + \rightarrow 18	2.04E+09	$\rightarrow 24$ $\rightarrow 10$	5.05L+12 5.87E+12
54	1.01E + 10	$\rightarrow 1$	$4.31E \pm 00$	→ +	-7.50E+05	$\rightarrow 25$	2.32E+00	$\rightarrow 10$	8.63E+08	~ 1)	$2.10E \pm 10$
55	1.012 ± 10 5.12E±00	$\rightarrow j$ $\rightarrow 16$	4.31E+09	$\rightarrow 0$ $\rightarrow 6$	2.32E+09	$\rightarrow 23$ $\rightarrow 7$	2.32E+09	$\rightarrow 20$	3.05E+08	$\rightarrow 3$ $\rightarrow 25$	2.192 ± 10 2.68E ± 10
56	$1.00E \pm 12$	$\rightarrow 10$ $\rightarrow 1$	3.10E+09	$\rightarrow 0$ $\rightarrow 3$	1.73E+09	$\rightarrow 1$	2 30E±09	\rightarrow 27	2.10E+09	$\rightarrow 23$ $\rightarrow 28$	$1.51E \pm 12$
50 57	1.09E + 12 2.26E + 12	$\rightarrow 1$ $\rightarrow 1$	$5.99E \pm 10$	$\rightarrow 3$ $\rightarrow 4$	1.201 ± 10 2 17E ± 00	$\rightarrow 7$	$1.63E\pm00$	$\rightarrow 27$ $\rightarrow 30$	2.09E+09	$\rightarrow 20$ $\rightarrow 20$	1.51E + 12 2 33E + 12
58	2.20E+12 $3.01E\pm00$	$\rightarrow 1$ $\rightarrow 27$	$1.60E\pm00$	$\rightarrow \mp$	2.17E+09	$\rightarrow 20$	1.05E+09	$\rightarrow 30$ $\rightarrow 22$	3.31E+00	$\rightarrow 29$ $\rightarrow 38$	2.33E + 12 7 1/E±00
50	5.91E+09 5.77E+11	$\rightarrow 27$ $\rightarrow 1$	2 70E±11	$\rightarrow 31$ $\rightarrow 4$	3.60E±09	$\rightarrow 3$ $\rightarrow 20$	1.40E+00	$\rightarrow 22$ $\rightarrow 28$	5.54E+07 6.01E±07	$\rightarrow 30$ $\rightarrow 23$	$8.61E \pm 11$
59	$3.77E \pm 11$	$\rightarrow 1$	$2.79E \pm 11$	$\rightarrow +$	1.00E+09	~ 29	7.00E+07	$\rightarrow 20$	5.67E+06	$\rightarrow 23$	4.00E+00
61	$3.90E \pm 0.9$	$\rightarrow 30$	1.20E+00	$\rightarrow 32$	$1.90E \pm 00$ $1.97E \pm 12$	$\rightarrow 34$	7.09E+07	$\rightarrow 33$	5.67E+00	$\rightarrow 0$	4.90E+09
62	$3.40E \pm 12$	$\rightarrow 2$	$1.45E \pm 12$	$\rightarrow 4$	1.27E+12	$\rightarrow 1$	3.74E+11	$\rightarrow 3$	$1.61E \pm 07$	$\rightarrow 3$	$0.57E \pm 12$
63	2.00E+09	$\rightarrow 32$	7.62E+05	$\rightarrow 34$	$1.40E \pm 05$	$\rightarrow 33$	$7.20E \pm 0.04$	$\rightarrow 30$	1.01E+07	$\rightarrow 19$	4.99E+09
64	4.90E+09	~ J+	1.02E+03	$\rightarrow 1$	6.57E+08	$\rightarrow 13$	7.20E+04	$\rightarrow 4$	1.15E+05	$\rightarrow 40$	4.90L+09
65	$0.64E \pm 12$	$\rightarrow 33$	$1.00E \pm 0.9$	$\rightarrow 32$	$0.37E \pm 0.000$	$\rightarrow 30$	1.77E+00	$\rightarrow 34$	1.25E+00	$\rightarrow 4$	1.40E+13
66	$9.04E \pm 12$ 1 35E ± 11	\rightarrow 0	$4.07E \pm 12$ 3.78E ± 10	$\rightarrow 1$ $\rightarrow 7$	$2.47E \pm 10$ 1.64E \pm 10	$\rightarrow +$	1.77E+09	$\rightarrow 29$ $\rightarrow 4$	$1.35E \pm 09$ 1.26E ± 00	$\rightarrow 31$ $\rightarrow 21$	1.402 ± 13 1.03E ± 11
67	$2.40E \pm 12$	$\rightarrow j$	3.76E + 10 2.37E + 12	\rightarrow 1	$1.04E \pm 10$ 1 54E ± 12	$\rightarrow 20$ $\rightarrow 2$	$2.13E \pm 11$	\rightarrow \rightarrow 3	$0.07E \pm 10$	$\rightarrow 21$ $\rightarrow 5$	$6.70E \pm 12$
68	1.91E + 13	\rightarrow \rightarrow 1	3.87E+12	$\rightarrow 1$ $\rightarrow 4$	$2.43E \pm 00$	$\rightarrow 2$ $\rightarrow 32$	$1.31E \pm 0.000$	$\rightarrow 3$ $\rightarrow 37$	9.07E+10 9.02E+08	$\rightarrow 3$	$1.95E \pm 13$
69	2.92E+10	$\rightarrow 6$	$1.86E \pm 10$	$\rightarrow 11$	7 10E+08	$\rightarrow 13$	3.31E+09	$\rightarrow 15$	6.02E+07	$\rightarrow 25$	4 88E+10
70	7.05E+12	$\rightarrow 3$	$2.28E \pm 09$	$\rightarrow 36$	$2.04E \pm 00$	$\rightarrow 27$	1.37E+00	$\rightarrow 31$	6.30E + 08	$\rightarrow 22$	7.05E+12
70	1.54E+13	$\rightarrow 1$	1.35E+12	$\rightarrow 3$	1.39E+09	$\rightarrow 37$	1.37E+09 1.24E+09	$\rightarrow 27$	1.15E+09	$\rightarrow 32$	1.68E+13
72	8.66E+12	\rightarrow 3	1.55E+12 1.62E+12	$\rightarrow 1$	1.39E+09 1.28E+12	$\rightarrow 2$	5.90E+11	$\rightarrow 4$	3.87E+11	$\rightarrow 5$	1.00 ± 1.0
73	4.85E+12	$\rightarrow 4$	8.93E+11	$\rightarrow 1$	6 58E+11	$\rightarrow 3$	1.93E+09	$\rightarrow 31$	1.06E+09	$\rightarrow 39$	6.41E+12
74	1.52E+12	$\rightarrow 1$	4.45E+12	$\rightarrow 4$	5.32E+11	$\rightarrow 3$	2 56E+11	$\rightarrow 5$	2 58E+09	$\rightarrow 37$	2.04F+13
75	4.17F+11	$\rightarrow 6$	4.23E+12	$\rightarrow 7$	1.98F+10	$\rightarrow 11$	1.15E+09	$\rightarrow 12$	3.41E+08	$\rightarrow 14$	2.01E+13
76	4.17E+11 8.03E+12	$\rightarrow 4$	4.23E+10 4.99E+12	$\rightarrow 1$	3.07E+09	$\rightarrow 39$	2.15E+09	\rightarrow 33	1.20E+09	$\rightarrow 32$	1.30E+13
70	1.84F+12	$\rightarrow 4$	1.99E+12 1.22E+12	$\rightarrow 3$	2.97E+10	$\rightarrow 1$	4.02E+09	$\rightarrow 38$	1.20E+09	$\rightarrow 43$	3.09E+12
78	2.06E+12	$\rightarrow 4$	2.93E+11	$\rightarrow 1$	4 99E+09	$\rightarrow 45$	2.24E+08	$\rightarrow 30$	8 40E+07	$\rightarrow 32$	2.36E+12
70 79	6.06E+12	$\rightarrow 7$	2.55E+11	$\rightarrow 11$	1.69E+10	$\rightarrow 8$	3 37E+08	$\rightarrow 13$	1.33E+08	$\rightarrow 21$	1.04F+11
80	8.40E+12	$\rightarrow 3$	5.51E+12	$\rightarrow 4$	1.00E+10 1.20E+12	$\rightarrow 1$	3.10E+09	$\rightarrow 43$	1.12E+09	$\rightarrow 45$	1.51E+13
81	1.66E+13	$\rightarrow 2$	7 19F+11	$\rightarrow 4$	2.09E+11	$\rightarrow 1$	3.80E+10	$\rightarrow 5$	3.37E+10	$\rightarrow 3$	1.51E+13 1.76E+13
82	1.00E + 13 1.47E + 12	$\rightarrow 6$	4.04F+11	$\rightarrow 7$	7.91E+09	$\rightarrow 12$	3.54E+09	$\rightarrow 11$	1.06E+09	$\rightarrow 13$	1.89E+12
83	4.75E+09	$\rightarrow 48$	2.44E+08	$\rightarrow 34$	3.23E+07	$\rightarrow 6$	1.03E+07	\rightarrow 33	9.35E+06	$\rightarrow 32$	5.06E+09
84	1.52E+03	$\rightarrow 3$	1.69E+09	$\rightarrow 47$	1.25E+09	$\rightarrow 51$	1.05E+07	$\rightarrow 36$	1.10E+09	$\rightarrow 43$	1.52E+13
85	2.51E+12	$\rightarrow 3$	4.34E+11	$\rightarrow 1$	3.41E+11	$\rightarrow 4$	2.79E+09	$\rightarrow 47$	1.10E+09 1.57E+09	$\rightarrow 54$	$3.29F \pm 12$
86	1.48F+13	$\rightarrow 3$	1.75E+12	$\rightarrow 2$	3.41E+11 8.55E+11	\rightarrow 5	3.92E+11	$\rightarrow 4$	5.48E+10	$\rightarrow 1$	1.78E+13
87	9.25E+11	$\rightarrow 1$	3 30E+10	$\rightarrow 4$	4.17E+09	$\rightarrow 54$	1.37E+09	$\rightarrow 48$	9.10E+10	\rightarrow 39	9.64F+11
88	1.30E+11	$\rightarrow 6$	6.65E+11	$\rightarrow 7$	5.33E+11	$\rightarrow 8$	1.57E+09 1.78E+10	$\rightarrow 12$	9.31E+08	$\rightarrow 16$	2.52E+12
89	2.65E+13	$\rightarrow 4$	1.58E+11	$\rightarrow 1$	3.50E+09	$\rightarrow 55$	1.70E+10	$\rightarrow 48$	6 79E+08	$\rightarrow 30$	2.52E+12 2.66E+13
90	1.24F+13	$\rightarrow 4$	5.11F+12	\rightarrow 3	1.04F+11	$\rightarrow 1$	3.00F+09	\rightarrow 51	1.79F+00	\rightarrow 55	1.76F + 13
91	2.40E+12	$\rightarrow 7$	1.51E+10	$\rightarrow 12$	3.04E+09	$\rightarrow 14$	1.93E+09	$\rightarrow 9$	1.59E+09	$\rightarrow 26$	2.42E+12
92	2.63E+12	\rightarrow 5	1.212+10 1.26F+12	$\rightarrow 4$	6.81E+11	→ 3	9.70F + 10	$\rightarrow 2$	3 35E+09	$\rightarrow 51$	2.83F+13
93	$5.34F \pm 10$	$\rightarrow 1$	1.20E + 12 1.20E + 12	$\rightarrow 18$	3.94F±00	$\rightarrow 10$	2 88F±00	$\rightarrow 60$	$7.02F \pm 08$	$\rightarrow 4$	$7.46E \pm 10$
94	1.39F+11	$\rightarrow 1$	1.20E + 10 1 46E + 10	$\rightarrow 17$	8.63E+09	\rightarrow 3	2.000 ± 09 2.60F+09	$\rightarrow 69$	1 78F+09	$\rightarrow 19$	1.71E+11
95	1.351 + 10	$\rightarrow 10$	4 88F±00	$\rightarrow 60$	$2.71E \pm 08$	$\rightarrow 34$	2.001109 2.27F+08	$\rightarrow 30$	$8.67E \pm 07$	$\rightarrow 32$	$1.68E \pm 10$
96	$3.29F \pm 11$	$\rightarrow 1$	9.94F±09	$\rightarrow 18$	$9.26F \pm 00$	$\rightarrow 4$	2.27 E+00 8 09F±00	$\rightarrow 17$	2 50F±00	$\rightarrow 75$	$3.68E \pm 11$
20	5.2915711	$\rightarrow 1$	2.27LT09	$\rightarrow 10$	9.20ET09	- 4	0.0915-09	$\rightarrow 1/$	2.5015+09	\rightarrow 15	3.00LT11

V. Jonauskas et al.: Transition rates for Fe xix, Online Material p 19

Table 5. continued.

Index	$A^{r}(s^{-1})$	final	$A^{r}(s^{-1})$	final	A^{r} (s ⁻¹)	final	$A^{r}(s^{-1})$	final	$A^{r}(s^{-1})$	final	$\sum A^r (\mathbf{s}^{-1})$
		level		level		level		level		level	
97	2.16E+12	$\rightarrow 1$	3.71E+10	$\rightarrow 4$	6.22E+09	$\rightarrow 23$	6.01E+09	$\rightarrow 19$	2.70E+09	$\rightarrow 37$	2.22E+12
98	3.76E+11	$\rightarrow 3$	3.48E+11	$\rightarrow 1$	1.18E+10	$\rightarrow 18$	2.76E+09	$\rightarrow 75$	2.22E+09	$\rightarrow 22$	7.48E+11
99	9.12E+11	$\rightarrow 8$	5.06E+11	$\rightarrow 7$	3.98E+10	$\rightarrow 14$	2.90E+10	$\rightarrow 9$	9.37E+09	$\rightarrow 13$	1.51E+12
100	1.03E+12	$\rightarrow 7$	3.66E+11	$\rightarrow 6$	3.95E+10	$\rightarrow 13$	4.23E+09	$\rightarrow 21$	3.37E+09	$\rightarrow 16$	1.46E+12
101	1.53E+12	$\rightarrow 6$	3.87E+10	$\rightarrow 15$	7.82E+09	$\rightarrow 25$	2.48E+09	$\rightarrow 16$	2.52E+07	$\rightarrow 13$	1.58E+12
102	1.20E+12	$\rightarrow 1$	6.03E+10	$\rightarrow 3$	5.51E+10	$\rightarrow 2$	1.58E+10	$\rightarrow 4$	1.04E+10	$\rightarrow 17$	1.36E+12
103	3.72E+10	$\rightarrow 3$	1.84E+10	$\rightarrow 17$	3.61E+09	$\rightarrow 79$	2.53E+08	$\rightarrow 38$	1.82E+08	$\rightarrow 27$	6.00E+10
104	3.03E+12	$\rightarrow 1$	1.22E+11	$\rightarrow 2$	9.56E+10	$\rightarrow 3$	6.63E+10	$\rightarrow 4$	2.04E+10	$\rightarrow 5$	3.36E+12
105	1.47E+12	$\rightarrow 1$	2.69E+10	$\rightarrow 4$	1.01E+10	$\rightarrow 19$	6.33E+09	$\rightarrow 23$	2.04E+09	$\rightarrow 82$	1.52E+12
106	3.28E+12	$\rightarrow 1$	5.73E+10	$\rightarrow 4$	3.97E+10	$\rightarrow 3$	1.16E+10	$\rightarrow 22$	4.44E+09	$\rightarrow 18$	3.40E+12
107	7.33E+10	$\rightarrow 3$	2.10E+10	$\rightarrow 19$	1.98E+10	$\rightarrow 1$	3.22E+09	$\rightarrow 79$	1.93E+09	$\rightarrow 75$	1.24E+11
108	3.00E+12	$\rightarrow 3$	2.71E+10	$\rightarrow 22$	2.23E+09	$\rightarrow 47$	2.00E+09	$\rightarrow 88$	1.43E+09	$\rightarrow 6$	3.03E+12
109	8.41E+11	$\rightarrow 9$	7.23E+10	$\rightarrow 6$	3.64E+10	$\rightarrow 7$	2.00E+10	$\rightarrow 16$	4.20E+09	$\rightarrow 15$	9.84E+11
110	3.00E+12	$\rightarrow 3$	5.04E+11	$\rightarrow 2$	9.25E+09	$\rightarrow 24$	7.76E+09	$\rightarrow 5$	6.91E+09	$\rightarrow 22$	3.55E+12
111	3.09E+12	$\rightarrow 3$	3.89E+11	$\rightarrow 1$	1.89E+10	$\rightarrow 23$	1.22E+10	$\rightarrow 4$	2.13E+09	$\rightarrow 88$	3.51E+12
112	3.12E+12	$\rightarrow 2$	7.74E+11	$\rightarrow 3$	1.88E+11	$\rightarrow 5$	1.95E+10	$\rightarrow 23$	3.82E+09	$\rightarrow 4$	4.12E+12
113	7.76E+11	$\rightarrow 6$	3.75E+11	$\rightarrow 7$	1.14E+11	$\rightarrow 9$	6.48E+10	$\rightarrow 8$	3.82E+10	$\rightarrow 13$	1.43E+12
114	7.59E+11	$\rightarrow 9$	4.07E+11	$\rightarrow 7$	5.40E+10	$\rightarrow 14$	4.24E+10	$\rightarrow 21$	1.85E+09	$\rightarrow 12$	1.27E+12
115	6.85E+09	$\rightarrow 46$	5.25E+09	$\rightarrow 40$	2.90E+09	$\rightarrow 93$	1.09E+09	$\rightarrow 95$	4.62E+08	$\rightarrow 53$	1.72E+10
116	7.00E+09	$\rightarrow 41$	6.10E+09	$\rightarrow 40$	2.70E+09	$\rightarrow 93$	1.51E+09	$\rightarrow 94$	8.13E+08	$\rightarrow 6$	1.96E+10
117	3.91E+11	$\rightarrow 7$	3.83E+11	$\rightarrow 6$	9.96E+10	$\rightarrow 15$	1.89E+10	$\rightarrow 13$	1.05E+10	$\rightarrow 9$	9.32E+11
118	8.49E+09	$\rightarrow 44$	5.52E+09	$\rightarrow 41$	5.23E+09	$\rightarrow 7$	3.21E+09	$\rightarrow 94$	1.43E+09	$\rightarrow 93$	2.59E+10
119	2.04E+12	$\rightarrow 9$	2.12E+11	$\rightarrow 8$	1.51E+11	$\rightarrow 7$	1.17E+11	$\rightarrow 16$	2.90E+10	$\rightarrow 6$	2.58E+12
120	4.14E+10	$\rightarrow 7$	1.50E+10	$\rightarrow 6$	9.32E+09	$\rightarrow 42$	4.59E+09	$\rightarrow 44$	4.18E+09	$\rightarrow 94$	8.13E+10
121	1.27E+11	$\rightarrow 3$	7.53E+10	$\rightarrow 1$	4.83E+10	$\rightarrow 4$	2.94E+10	$\rightarrow 28$	6.69E+09	$\rightarrow 29$	3.01E+11
122	7.01E+09	$\rightarrow 46$	4.78E+09	$\rightarrow 95$	1.91E+08	$\rightarrow 63$	1.41E+08	$\rightarrow 60$	7.52E+06	$\rightarrow 62$	1.21E+10
123	2.98E+12	$\rightarrow 4$	5.20E+11	$\rightarrow 1$	1.58E+11	$\rightarrow 3$	4.41E+10	$\rightarrow 27$	3.60E+10	$\rightarrow 2$	3.82E+12
124	2.24E+11	$\rightarrow 4$	4.69E+10	$\rightarrow 1$	2.69E+10	$\rightarrow 30$	5.83E+09	$\rightarrow 33$	2.76E+09	$\rightarrow 29$	3.17E+11
125	1.40E+11	$\rightarrow 7$	1.58E+10	$\rightarrow 44$	4.34E+09	$\rightarrow 96$	2.15E+09	$\rightarrow 9$	1.61E+09	$\rightarrow 52$	1.65E+11
126	4.83E+09	$\rightarrow 97$	4.61E+09	$\rightarrow 46$	2.77E+09	$\rightarrow 1$	2.58E+09	$\rightarrow 40$	1.02E+09	$\rightarrow 53$	1.74E+10
127	3.07E+10	$\rightarrow 34$	4.23E+09	$\rightarrow 48$	3.89E+09	$\rightarrow 101$	2.67E+09	$\rightarrow 33$	1.41E+09	$\rightarrow 6$	4.33E+10
128	3.60E+12	$\rightarrow 4$	3.90E+11	$\rightarrow 1$	3.03E+10	$\rightarrow 32$	8.33E+09	$\rightarrow 55$	3.98E+09	$\rightarrow 33$	4.04E+12
129	7.63E+11	$\rightarrow 6$	5.13E+10	$\rightarrow 7$	1.29E+10	$\rightarrow 41$	1.00E+10	$\rightarrow 8$	4.66E+09	$\rightarrow 44$	8.50E+11
130	3.09E+11	$\rightarrow 1$	7.04E+10	$\rightarrow 3$	3.05E+10	$\rightarrow 4$	1.58E+10	$\rightarrow 29$	1.18E+10	$\rightarrow 30$	4.68E+11
131	1.12E+12	$\rightarrow 6$	6.46E+09	$\rightarrow 40$	3.57E+09	$\rightarrow 98$	2.24E+09	$\rightarrow 41$	1.55E+09	$\rightarrow 97$	1.13E+12
132	1.20E+12	$\rightarrow 4$	1.22E+11	$\rightarrow 1$	5.33E+10	$\rightarrow 2$	3.13E+10	$\rightarrow 3$	1.87E+10	$\rightarrow 29$	1.48E+12
133	1.15E+12	$\rightarrow 6$	2.02E+11	$\rightarrow 7$	8.91E+09	$\rightarrow 40$	5.92E+09	$\rightarrow 41$	2.23E+09	$\rightarrow 96$	1.38E+12
134	8.58E+11	$\rightarrow 4$	2.48E+10	$\rightarrow 1$	1.51E+10	$\rightarrow 33$	5.94E+09	$\rightarrow 34$	5.69E+09	$\rightarrow 54$	9.32E+11
135	3.20E+12	$\rightarrow 4$	5.45E+11	$\rightarrow 1$	3.71E+10	$\rightarrow 3$	1.28E+10	$\rightarrow 33$	1.14E+10	$\rightarrow 39$	3.84E+12
136	1.66E+12	$\rightarrow 9$	3.52E+11	$\rightarrow 8$	2.23E+11	$\rightarrow 7$	9.03E+10	$\rightarrow 25$	2.45E+10	$\rightarrow 13$	2.39E+12
137	6.92E+10	$\rightarrow 7$	1.27E+10	$\rightarrow 6$	9.84E+09	$\rightarrow 40$	2.73E+09	$\rightarrow 102$	2.37E+09	$\rightarrow 41$	1.03E+11
138	5.85E+09	$\rightarrow 1$	4.72E+09	$\rightarrow 105$	4.50E+09	$\rightarrow 53$	4.10E+09	$\rightarrow 46$	8.30E+08	$\rightarrow 97$	2.12E+10
139	1.09E+11	$\rightarrow 7$	7.72E+10	$\rightarrow 8$	5.15E+09	$\rightarrow 44$	3.31E+09	$\rightarrow 42$	3.15E+09	$\rightarrow 6$	2.07E+11
140	1.47E+12	$\rightarrow 4$	4.42E+11	$\rightarrow 1$	4.08E+11	$\rightarrow 2$	1.56E+11	$\rightarrow 3$	1.80E+10	$\rightarrow 29$	2.56E+12
141	2.07E+12	$\rightarrow 4$	2.13E+11	$\rightarrow 3$	1.03E+11	$\rightarrow 1$	1.95E+10	$\rightarrow 32$	1.06E+10	$\rightarrow 37$	2.44E+12
142	1.39E+12	$\rightarrow 6$	1.56E+10	$\rightarrow 46$	2.20E+09	$\rightarrow 107$	1.89E+09	$\rightarrow 1$	1.74E+09	$\rightarrow 50$	1.42E+12

Table 5. continued.

Index	$A^{r}(s^{-1})$	final	A^{r} (s ⁻¹)	final	A^{r} (s ⁻¹)	final	A^{r} (s ⁻¹)	final	A^{r} (s ⁻¹)	final	$\sum A^r (s^{-1})$
maex	M (5)	level	11 (5)	level	11 (5)	level	11 (5)	level	11 (5)	level	<u> </u>
143	2.29E+12	$\rightarrow 3$	4.26E+10	$\rightarrow 31$	1.22E+10	$\rightarrow 27$	1.10E+10	$\rightarrow 36$	6.44E+09	$\rightarrow 99$	2.37E+12
144	6.67E+11	$\rightarrow 7$	4.04E+11	$\rightarrow 9$	7.76E+10	$\rightarrow 26$	2.41E+10	$\rightarrow 14$	8.45E+09	$\rightarrow 21$	1.18E+12
145	1.12E+12	$\rightarrow 6$	6.90E+09	$\rightarrow 46$	5.14E+09	$\rightarrow 50$	4.36E+09	$\rightarrow 1$	2.26E+09	$\rightarrow 106$	1.14E+12
146	3.37E+12	$\rightarrow 7$	1.67E+10	$\rightarrow 52$	1.64E+10	$\rightarrow 9$	6.48E+09	$\rightarrow 1$	4.44E+09	$\rightarrow 104$	3.43E+12
147	2.96E+12	$\rightarrow 7$	2.46E+12	$\rightarrow 6$	1.20E+10	$\rightarrow 9$	1.11E+10	$\rightarrow 52$	7.24E+09	$\rightarrow 1$	5.47E+12
148	4.51E+12	$\rightarrow 6$	2.02E+12	$\rightarrow 7$	7.35E+09	$\rightarrow 1$	6.69E+09	$\rightarrow 52$	5.10E+09	$\rightarrow 50$	6.56E+12
149	2.31E+12	$\rightarrow 6$	5.67E+10	$\rightarrow 7$	7.78E+09	$\rightarrow 50$	4.85E+09	$\rightarrow 3$	4.29E+09	$\rightarrow 110$	2.40E+12
150	4.90E+12	$\rightarrow 8$	2.53E+12	$\rightarrow 7$	1.77E+10	$\rightarrow 50$	1.26E+10	$\rightarrow 6$	6.67E+09	$\rightarrow 52$	7.49E+12
151	5.92E+11	$\rightarrow 3$	3.80E+10	$\rightarrow 27$	3.16E+10	$\rightarrow 38$	1.75E+10	$\rightarrow 36$	4.63E+09	$\rightarrow 31$	6.92E+11
152	1.12E+13	$\rightarrow 6$	1.77E+10	$\rightarrow 53$	6.21E+09	$\rightarrow 3$	5.84E+09	$\rightarrow 111$	1.77E+09	$\rightarrow 1$	1.13E+13
153	7.69E+11	$\rightarrow 3$	3.27E+11	$\rightarrow 5$	1.56E+11	$\rightarrow 1$	5.59E+10	$\rightarrow 2$	5.23E+10	$\rightarrow 28$	1.42E+12
154	6.54E+12	$\rightarrow 7$	5.58E+10	$\rightarrow 6$	2.10E+10	$\rightarrow 53$	1.08E+10	$\rightarrow 9$	5.99E+09	$\rightarrow 112$	6.65E+12
155	4.01E+11	$\rightarrow 3$	2.91E+11	$\rightarrow 1$	1.90E+11	$\rightarrow 4$	4.88E+10	$\rightarrow 30$	2.03E+10	$\rightarrow 45$	9.89E+11
156	2.09E+12	$\rightarrow 5$	9.65E+11	$\rightarrow 2$	4.93E+10	$\rightarrow 4$	3.10E+10	$\rightarrow 1$	2.55E+10	$\rightarrow 10$	3.28E+12
157	3.09E+11	$\rightarrow 1$	2.59E+11	$\rightarrow 4$	7.88E+10	$\rightarrow 3$	5.06E+10	$\rightarrow 32$	2.06E+10	$\rightarrow 30$	7.81E+11
158	6.13E+11	$\rightarrow 3$	8.61E+10	$\rightarrow 33$	7.09E+10	$\rightarrow 1$	3.74E+10	$\rightarrow 4$	1.48E+10	$\rightarrow 29$	8.74E+11
159	1.25E+12	$\rightarrow 1$	5.18E+11	$\rightarrow 4$	1.02E+11	$\rightarrow 34$	1.08E+10	$\rightarrow 48$	1.02E+10	$\rightarrow 32$	1.92E+12
160	3.45E+11	$\rightarrow 4$	3.13E+11	$\rightarrow 1$	4.78E+10	$\rightarrow 37$	3.02E+10	$\rightarrow 2$	2.53E+10	$\rightarrow 3$	8.39E+11
161	9.63E+10	$\rightarrow 3$	5.39E+10	$\rightarrow 31$	3.43E+10	$\rightarrow 47$	1.68E+10	$\rightarrow 38$	1.27E+10	$\rightarrow 43$	2.30E+11
162	8.32E+11	$\rightarrow 3$	4.56E+11	$\rightarrow 5$	1.77E+11	$\rightarrow 2$	8.88E+10	$\rightarrow 1$	5.19E+10	$\rightarrow 39$	1.76E+12
163	2.03E+10	$\rightarrow 59$	1.64E+10	$\rightarrow 6$	4.63E+09	$\rightarrow 121$	3.69E+09	$\rightarrow 57$	3.68E+09	$\rightarrow 56$	5.52E+10
164	1.92E+10	$\rightarrow 60$	5.71E+09	$\rightarrow 64$	4.03E+09	$\rightarrow 124$	2.71E+09	$\rightarrow 57$	1.44E+09	$\rightarrow 78$	3.71E+10
165	2.35E+10	$\rightarrow 63$	4.22E+09	$\rightarrow 127$	2.35E+09	$\rightarrow 83$	1.49E+09	$\rightarrow 62$	7.34E+08	$\rightarrow 64$	3.26E+10
166	8.92E+10	$\rightarrow 7$	1.28E+10	$\rightarrow 59$	1.02E+10	$\rightarrow 56$	7.52E+09	$\rightarrow 61$	5.61E+09	$\rightarrow 9$	1.45E+11
167	9.59E+10	$\rightarrow 3$	7.25E+10	$\rightarrow 51$	2.09E+10	$\rightarrow 27$	1.22E+10	$\rightarrow 43$	4.18E+09	$\rightarrow 88$	2.18E+11
168	6.17E+11	$\rightarrow 3$	7.51E+10	$\rightarrow 48$	2.55E+10	$\rightarrow 54$	1.38E+10	$\rightarrow 32$	1.30E+10	$\rightarrow 30$	7.77E+11
169	1.09E+13	$\rightarrow 7$	6.25E+12	$\rightarrow 6$	3.74E+11	$\rightarrow 8$	1.21E+11	$\rightarrow 9$	1.22E+10	$\rightarrow 56$	1.77E+13
170	7.98E+11	$\rightarrow 6$	9.90E+09	$\rightarrow 60$	9.32E+09	$\rightarrow 57$	5.53E+09	$\rightarrow 65$	4.34E+09	$\rightarrow 78$	8.42E+11
171	2.39E+12	$\rightarrow 5$	2.42E+11	$\rightarrow 2$	8.98E+10	$\rightarrow 3$	6.9/E+10	$\rightarrow 1$	4.56E+10	$\rightarrow 54$	2.94E+12
172	1.56E+10	$\rightarrow 62$	8.02E+09	$\rightarrow 64$	3.99E+09	$\rightarrow 4$	3.76E+09	$\rightarrow 128$	2.25E+09	$\rightarrow 60$	4.44E+10
173	1.52E+12	$\rightarrow 6$	2.85E+12	$\rightarrow 8$	6.91E+11	$\rightarrow 9$	3.14E+11	\rightarrow /	1.81E+10	$\rightarrow 50$	1.19E+13
174	1.53E+13	\rightarrow /	1.03E+12	$\rightarrow 9$	4.85E+10	$\rightarrow 61$	4.1/E+09	$\rightarrow 123$	3.23E+09	$\rightarrow 1$	1.10E+13
175	1.05E+15 1.12E+10	\rightarrow /	3.38E+11 8.45E+00	$\rightarrow 0$	2.00E+11	$\rightarrow 9$	2.72E+10	$\rightarrow 57$	0.48E+09	$\rightarrow 59$	1.11E+13 4.72E+10
170	$1.12E \pm 10$ $1.22E \pm 12$	$\rightarrow 04$	0.43E+09	$\rightarrow 4$	2.90E+09	$\rightarrow 03$	4.36E+09	$\rightarrow 00$	3.79E+09	$\rightarrow 0.5$	4.73E+10 1.22E+12
178	$1.25E \pm 13$ 1.76E ± 13	$\rightarrow 0$ $\rightarrow 6$	$1.02E \pm 10$ 3 /1E ± 12	$\rightarrow 02$ $\rightarrow 7$	0.001+09	$\rightarrow 00$	$1.09E \pm 10$	$\rightarrow 63$	2.73E+09	$\rightarrow 134$ $\rightarrow 71$	$1.25E \pm 15$ 2 12E ± 13
170	$1.70E \pm 13$ $1.26E \pm 13$	$\rightarrow 0$ $\rightarrow 8$	5.412 ± 12 6.23E ± 12	\rightarrow /	2.041 ± 10 2.005 ± 12	$\rightarrow j$ $\rightarrow 7$	$1.92E \pm 10$ 1.71E ± 10	$\rightarrow 00$ $\rightarrow 65$	0.04E+09	$\rightarrow 71$ $\rightarrow 67$	$2.12E \pm 13$ 2 10E ± 13
180	4.54E+12	$\rightarrow 0$	3.12E + 12	$\rightarrow 7$	$1.85E \pm 12$	$\rightarrow 8$	1.71E + 10 $1.12E \pm 12$	$\rightarrow 6$	$1.18E \pm 10$	$\rightarrow 73$	1.07E + 13
181	4.34E+12 2 77F+12	$\rightarrow 6$	1.52E+12	\rightarrow 7	1.05E+12 1 47E+12	$\rightarrow 0$ $\rightarrow 9$	9.83E+09	$\rightarrow 0$ $\rightarrow 4$	9.79E+09	$\rightarrow 73$ $\rightarrow 71$	5.82E+12
182	2.77E+12 2.12F+12	$\rightarrow 6$	1.52E+12 1.12E+10	$\rightarrow 4$	1.00E+10	$\rightarrow 76$	7.95E+09	$\rightarrow 64$	7.74E+09	$\rightarrow 60$	2 18F+12
183	1.71E+13	$\rightarrow 9$	3.67E+12	$\rightarrow 7$	1.52E+10	$\rightarrow 72$	1.51E+10	$\rightarrow 67$	1.13E+10	$\rightarrow 74$	2.08E+13
184	4.81E+11	$\rightarrow 4$	2.35E+11	$\rightarrow 5$	9.32E+10	$\rightarrow 55$	3.94E+10	$\rightarrow 3$	3.34E+10	$\rightarrow 10$	9.62E+11
185	2.72E+11	$\rightarrow 9$	4.82E+10	$\rightarrow 7$	3.75E+10	$\rightarrow 8$	3.33E+10	$\rightarrow 56$	2.26E+10	$\rightarrow 77$	4.53E+11
186	6.41E+11	$\rightarrow 7$	1.21E+11	$\rightarrow 9$	1.14E+11	$\rightarrow 6$	2.89E+10	$\rightarrow 57$	1.28E+10	→ 77	9.69E+11
187	4.81E+12	$\rightarrow 6$	2.30E+10	$\rightarrow 60$	1.11E+10	$\rightarrow 78$	8.22E+09	$\rightarrow 62$	6.33E+09	$\rightarrow 80$	4.89E+12

V. Jonauskas et al.: Transition rates for Fe xix, Online Material p 21

Table 5. continued.

Index	$A^{r}(s^{-1})$	final	$A^{r}(s^{-1})$	final	A^{r} (s ⁻¹)	final	$A^{r}(s^{-1})$	final	$A^{r}(s^{-1})$	final	$\sum A^r (s^{-1})$
		level		level		level		level		level	
188	2.87E+12	$\rightarrow 6$	4.40E+10	$\rightarrow 62$	2.53E+10	$\rightarrow 60$	1.51E+10	$\rightarrow 68$	4.85E+09	$\rightarrow 78$	3.00E+12
189	3.93E+12	$\rightarrow 7$	2.35E+10	$\rightarrow 9$	2.28E+10	$\rightarrow 59$	1.08E+10	$\rightarrow 78$	8.43E+09	$\rightarrow 76$	4.06E+12
190	4.56E+12	$\rightarrow 7$	3.48E+12	$\rightarrow 6$	5.50E+10	$\rightarrow 9$	2.37E+10	$\rightarrow 57$	2.08E+10	$\rightarrow 68$	8.20E+12
191	9.42E+10	$\rightarrow 64$	1.30E+10	$\rightarrow 76$	8.96E+09	$\rightarrow 59$	5.45E+09	$\rightarrow 6$	3.22E+09	$\rightarrow 158$	1.47E+11
192	9.59E+10	$\rightarrow 63$	1.23E+10	$\rightarrow 62$	9.60E+09	$\rightarrow 83$	5.26E+09	$\rightarrow 159$	5.14E+09	$\rightarrow 78$	1.46E+11
193	8.25E+12	$\rightarrow 7$	1.58E+12	$\rightarrow 8$	1.22E+12	$\rightarrow 6$	2.75E+11	$\rightarrow 9$	2.84E+10	$\rightarrow 71$	1.14E+13
194	7.46E+12	$\rightarrow 7$	4.97E+10	$\rightarrow 9$	3.41E+10	$\rightarrow 72$	2.25E+10	$\rightarrow 74$	1.89E+10	$\rightarrow 86$	7.62E+12
195	7.15E+12	$\rightarrow 8$	5.63E+12	$\rightarrow 9$	2.53E+11	$\rightarrow 6$	2.36E+11	$\rightarrow 7$	2.24E+10	$\rightarrow 80$	1.34E+13
196	8.35E+12	$\rightarrow 9$	1.19E+12	$\rightarrow 7$	8.93E+10	$\rightarrow 6$	4.22E+10	$\rightarrow 76$	1.69E+10	$\rightarrow 59$	9.76E+12
197	6.38E+10	$\rightarrow 83$	2.26E+10	$\rightarrow 87$	2.11E+10	$\rightarrow 60$	5.42E+09	$\rightarrow 6$	4.80E+09	$\rightarrow 168$	1.37E+11
198	1.24E+12	$\rightarrow 7$	1.43E+11	$\rightarrow 9$	6.70E+10	$\rightarrow 6$	3.22E+10	$\rightarrow 87$	2.34E+10	$\rightarrow 85$	1.56E+12
199	1.71E+13	$\rightarrow 9$	2.13E+12	$\rightarrow 8$	6.20E+10	$\rightarrow 7$	5.09E+10	$\rightarrow 90$	1.47E+10	$\rightarrow 92$	1.94E+13
200	2.79E+13	$\rightarrow 9$	1.25E+11	$\rightarrow 7$	8.21E+10	$\rightarrow 89$	1.26E+10	$\rightarrow 90$	6.53E+09	$\rightarrow 76$	2.81E+13
201	4.27E+10	$\rightarrow 101$	3.56E+10	$\rightarrow 117$	1.98E+10	$\rightarrow 100$	1.96E+10	$\rightarrow 1$	1.16E+10	$\rightarrow 3$	1.60E+11
202	1.24E+12	$\rightarrow 10$	5.05E+10	$\rightarrow 109$	2.35E+10	$\rightarrow 119$	2.07E+10	$\rightarrow 4$	1.71E+10	$\rightarrow 99$	1.42E+12
203	4.77E+10	$\rightarrow 119$	4.63E+10	$\rightarrow 99$	3.18E+10	$\rightarrow 136$	2.69E+10	$\rightarrow 3$	4.14E+09	$\rightarrow 113$	1.62E+11
204	1.41E+12	$\rightarrow 10$	3.34E+10	$\rightarrow 117$	2.83E+10	$\rightarrow 4$	2.74E+10	$\rightarrow 136$	2.55E+10	$\rightarrow 109$	1.60E+12
205	2.32E+12	$\rightarrow 6$	2.37E+11	$\rightarrow 7$	6.90E+10	$\rightarrow 8$	2.04E+10	$\rightarrow 141$	2.03E+10	$\rightarrow 140$	2.75E+12
206	1.07E+12	$\rightarrow 6$	8.02E+11	$\rightarrow 7$	3.05E+11	$\rightarrow 9$	3.64E+10	$\rightarrow 124$	2.54E+10	$\rightarrow 157$	2.30E+12
207	2.39E+12	$\rightarrow 6$	4.35E+10	$\rightarrow 127$	2.74E+10	$\rightarrow 159$	8.76E+09	$\rightarrow 128$	6.66E+09	$\rightarrow 134$	2.51E+12
208	1.57E+12	$\rightarrow 7$	1.41E+12	$\rightarrow 9$	8.80E+10	$\rightarrow 6$	2.95E+10	$\rightarrow 135$	1.66E+10	$\rightarrow 121$	3.20E+12
209	1.19E+12	$\rightarrow 6$	4.93E+11	$\rightarrow 9$	4.89E+11	$\rightarrow 7$	3.47E+10	$\rightarrow 134$	1.16E+10	$\rightarrow 158$	2.30E+12
210	2.27E+12	$\rightarrow 7$	3.81E+10	$\rightarrow 162$	3.61E+10	$\rightarrow 132$	2.08E+10	$\rightarrow 160$	1.22E+10	$\rightarrow 9$	2.41E+12
211	2.29E+11	$\rightarrow 19$	1.44E+11	$\rightarrow 18$	9.11E+10	$\rightarrow 17$	3.28E+10	$\rightarrow 1$	1.89E+10	$\rightarrow 23$	5.25E+11
212	1.60E+12	$\rightarrow 9$	9.30E+11	$\rightarrow 8$	3.67E+11	$\rightarrow 7$	3.38E+10	$\rightarrow 121$	1.98E+10	$\rightarrow 157$	3.03E+12
213	8.05E+11	$\rightarrow 1$	2.72E+11	$\rightarrow 3$	1.89E+11	$\rightarrow 23$	1.65E+11	$\rightarrow 2$	1.28E+11	$\rightarrow 22$	1.77E+12
214	1.36E+12	$\rightarrow 8$	9.41E+11	$\rightarrow 9$	3.06E+11	$\rightarrow 7$	7.71E+10	$\rightarrow 6$	2.73E+10	$\rightarrow 168$	2.82E+12
215	1.21E+12	$\rightarrow 9$	1.03E+12	\rightarrow /	3.13E+10	$\rightarrow 159$	3.03E+10	$\rightarrow 128$	2.15E+10	$\rightarrow 168$	2.39E+12
216	3.96E+11	$\rightarrow 11$	4.60E+10	$\rightarrow 44$	3.80E+10	$\rightarrow 41$	2.04E+10	$\rightarrow 42$	1.41E+10	$\rightarrow 12$	5.19E+11
217	3.69E+11	$\rightarrow 11$	5./9E+10	$\rightarrow 40$	3.94E+10	$\rightarrow 12$	3.3/E+10	$\rightarrow 41$	8.80E+09	$\rightarrow 44$	5.1/E+11
218	3.95E+11	$\rightarrow 11$	7.03E+10	$\rightarrow 46$	1.91E+10	$\rightarrow 40$	2.95E+09	$\rightarrow 41$	1.00E+09	$\rightarrow 211$	4.9/E+11
219	5./8E+11	$\rightarrow 12$	7.00E+10	$\rightarrow 50$	2.55E+10	$\rightarrow 52$	1.20E+10	$\rightarrow 11$	5./9E+09	$\rightarrow /1$	5.10E+11
220	3.43E+11	$\rightarrow 12$	7.03E+10	$\rightarrow 55$	3.34E+10	$\rightarrow 11$	1.42E+10	$\rightarrow 50$	1.02E+10	$\rightarrow 08$	5.12E+11
221	3.33E+11	$\rightarrow 12$	9.70E+10	$\rightarrow 32$	$2.00E \pm 10$	$\rightarrow 14$	$1.10E \pm 10$	$\rightarrow 9$	0.02E+09	$\rightarrow 12$	3.10E+11
222	3./4E+11 2.60E+11	$\rightarrow 3$	1.02E+11	$\rightarrow 29$	1.03E+11 1.10E+11	$\rightarrow 2$	0.70E+10	$\rightarrow 20$	3.78E+10 9.79E+10	$\rightarrow 30$	$1.04E \pm 12$
225	3.09E + 11	$\rightarrow 1$	$1.21E \pm 11$	$\rightarrow 30$	$1.10E \pm 11$	$\rightarrow 4$	9.0/E+10	$\rightarrow 3$	0.70E+10	$\rightarrow 32$	1.00E + 12
224	7.57E+10	$\rightarrow 3$	$4.01E \pm 10$	$\rightarrow 1/3$	1.0/E+10	$\rightarrow 193$	1.00E + 10 1.02E + 10	$\rightarrow 103$	$0.30E \pm 0.9$	$\rightarrow 100$	1.90E+11
225	7.07E + 10 5.42E + 11	$\rightarrow 10$	3.03E+10 1.07E+11	$\rightarrow 3$	$2.01E \pm 10$ 1.11E ± 11	$\rightarrow 173$	1.95E + 10	$\rightarrow 1$	$1.44E \pm 10$	$\rightarrow 190$	2.3/E+11
220	3.42E+11	$\rightarrow 1$	1.97E + 11 1.07E + 10	$\rightarrow 34$	1.11E+11 8.71E+00	$\rightarrow 37$	0.92E+10 7.51E+00	$\rightarrow 32$	0.02E + 10	$\rightarrow 30$	$1.00E \pm 12$
227	4.55E+10	$\rightarrow 103$	1.97E+10	$\rightarrow 192$	1.25E + 11	$\rightarrow 1/2$	1.07E+11	$\rightarrow 0$	5.40E+10	→ 104 、55	1.112 ± 11 1.38 ± 12
220	7.521711 3.22F 10	→ 4 → 1	2.32E + 10	$\rightarrow 33$ $\rightarrow 199$	1.255 ± 11 2 10E 10	$\rightarrow 39$ $\rightarrow 177$	8 48E- 00	$\rightarrow 3$ $\rightarrow 196$	7 87E- 00	$\rightarrow 33$ $\rightarrow 179$	1.50E+12
229 230	$3.22E \pm 10$ $4.84E \pm 10$	$\rightarrow 1$ $\rightarrow 1$	$2.52E \pm 10$ 2 51E ± 10	$\rightarrow 100$ $\rightarrow 164$	2.10 ± 10 1 70F + 10	$\rightarrow 1//$ $\rightarrow 101$	0.+0E+09	$\rightarrow 100$ $\rightarrow 172$	7.02E+09	$\rightarrow 1/0$ $\rightarrow 163$	$1.52E \pm 11$ 1.62E ± 11
230	$4.07E \pm 10$	$\rightarrow +$ $\rightarrow 0$	2.512 ± 10 7 20F±10	$\rightarrow 104$ $\rightarrow 184$	1.792 ± 10 1 30F ± 10	$\rightarrow 191$ $\rightarrow 204$	1.002 ± 10 1.12F ± 10	$\rightarrow 1/2$ $\rightarrow 202$	1.001 ± 09 $1.07E \pm 10$	$\rightarrow 103$ $\rightarrow 160$	$4.35E \pm 12$
231	$4.01F \pm 11$	18	3.201 ± 10	$\rightarrow 17$	$1.00E \pm 10$ $1.02E \pm 11$	$\rightarrow 1$	$6.00E \pm 10$	$\rightarrow 10$	$3.40F \pm 10$	$\rightarrow 23$	$1.05E \pm 12$
232	4.71C+11	$\rightarrow 10$	3.23E+11	$\rightarrow 1/$	1.026+11	$\rightarrow 1$	0.0000+10	$\rightarrow 19$	3.40£+10	$\rightarrow 23$	1.05E+12

Table 5. continued.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Index	$A^{r}(s^{-1})$	final	$A^{r}(s^{-1})$	final	$A^{r}(s^{-1})$	final	$A^{r}(s^{-1})$	final	$A^{r}(s^{-1})$	final	$\sum A^r (s^{-1})$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			level		level		level		level		level	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	233	2.64E+10	$\rightarrow 163$	1.37E+10	$\rightarrow 182$	1.13E+10	$\rightarrow 4$	1.02E+10	$\rightarrow 3$	8.81E+09	$\rightarrow 191$	1.46E+11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	234	8.78E+11	$\rightarrow 17$	4.89E+10	$\rightarrow 22$	3.56E+10	$\rightarrow 3$	4.17E+09	$\rightarrow 79$	1.39E+09	$\rightarrow 129$	9.72E+11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	235	6.07E+11	$\rightarrow 18$	3.01E+11	$\rightarrow 19$	1.61E+10	$\rightarrow 23$	1.10E+10	$\rightarrow 1$	5.81E+09	$\rightarrow 4$	9.53E+11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	236	6.67E+11	$\rightarrow 17$	2.07E+11	$\rightarrow 18$	9.92E+10	$\rightarrow 1$	2.69E+10	$\rightarrow 22$	2.41E+10	$\rightarrow 23$	1.06E+12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	237	9.30E+11	$\rightarrow 19$	6.12E+09	$\rightarrow 69$	1.13E+09	$\rightarrow 218$	7.13E+08	$\rightarrow 142$	6.44E+08	$\rightarrow 122$	9.41E+11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	238	3.39E+10	$\rightarrow 176$	2.57E+10	$\rightarrow 4$	2.41E+10	$\rightarrow 1$	2.37E+10	$\rightarrow 23$	1.21E+10	$\rightarrow 192$	1.88E+11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	239	2.00E+12	$\rightarrow 3$	1.45E+12	$\rightarrow 1$	6.16E+11	$\rightarrow 22$	2.06E+11	$\rightarrow 23$	2.89E+10	$\rightarrow 4$	4.39E+12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	240	2.40E+11	$\rightarrow 13$	1.44E+11	$\rightarrow 14$	4.06E+10	$\rightarrow 61$	3.87E+10	$\rightarrow 56$	2.17E+10	$\rightarrow 16$	5.36E+11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	241	3.09E+12	$\rightarrow 2$	1.35E+12	$\rightarrow 3$	4.36E+11	$\rightarrow 24$	3.16E+11	$\rightarrow 22$	1.66E+11	$\rightarrow 1$	5.54E+12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	242	5.54E+12	$\rightarrow 1$	7.30E+11	$\rightarrow 23$	7.42E+10	$\rightarrow 37$	5.82E+10	$\rightarrow 4$	3.28E+10	$\rightarrow 18$	6.47E+12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	243	2.85E+11	$\rightarrow 14$	1.20E+11	$\rightarrow 13$	5.40E+10	$\rightarrow 59$	1.98E+10	$\rightarrow 56$	1.43E+10	$\rightarrow 15$	5.26E+11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	244	3.87E+11	$\rightarrow 13$	6.06E+10	$\rightarrow 60$	1.32E+10	$\rightarrow 57$	1.20E+10	$\rightarrow 16$	1.02E+10	$\rightarrow 62$	5.09E+11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	245	2.43E+11	$\rightarrow 13$	1.19E+11	$\rightarrow 14$	3.38E+10	$\rightarrow 57$	2.42E+10	$\rightarrow 59$	2.11E+10	$\rightarrow 65$	5.05E+11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	246	4.74E+12	$\rightarrow 10$	1.03E+11	$\rightarrow 2$	2.61E+10	$\rightarrow 166$	2.53E+10	$\rightarrow 196$	1.88E+10	$\rightarrow 3$	4.99E+12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	247	2.04E+11	$\rightarrow 14$	1.11E+11	$\rightarrow 16$	5.65E+10	$\rightarrow 13$	4.61E+10	$\rightarrow 65$	3.61E+10	$\rightarrow 67$	5.02E+11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	248	3.32E+11	$\rightarrow 14$	5.21E+10	$\rightarrow 67$	3.13E+10	$\rightarrow 72$	2.91E+10	$\rightarrow 61$	1.94E+10	$\rightarrow 9$	4.89E+11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	249	2.88E+11	$\rightarrow 15$	1.17E+11	$\rightarrow 16$	2.69E+10	$\rightarrow 64$	2.19E+10	$\rightarrow 62$	1.93E+10	$\rightarrow 41$	5.63E+11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	250	1.35E+12	$\rightarrow 41$	5.62E+11	$\rightarrow 40$	2.57E+10	$\rightarrow 46$	1.63E+10	$\rightarrow 50$	7.57E+09	$\rightarrow 15$	1.99E+12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	251	1.67E+12	$\rightarrow 40$	3.15E+11	$\rightarrow 46$	5.06E+09	$\rightarrow 53$	3.83E+09	$\rightarrow 68$	2.85E+09	$\rightarrow 97$	2.01E+12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	252	1.11E+12	$\rightarrow 44$	7.82E+11	$\rightarrow 41$	7.66E+10	$\rightarrow 40$	2.58E+10	$\rightarrow 52$	3.73E+09	$\rightarrow 61$	2.01E+12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	253	9.35E+11	$\rightarrow 42$	9.33E+11	$\rightarrow 44$	1.29E+11	$\rightarrow 41$	4.11E+09	$\rightarrow 50$	3.49E+09	$\rightarrow 103$	2.01E+12
255 $1.41E+12$ $\rightarrow 50$ $1.76E+11$ $\rightarrow 53$ $8.46E+10$ $\rightarrow 71$ $4.80E+10$ $\rightarrow 56$ $4.56E+10$ $\rightarrow 65$ $1.90E+12$ 256 $1.49E+12$ $\rightarrow 53$ $2.49E+11$ $\rightarrow 68$ $6.28E+10$ $\rightarrow 57$ $1.86E+10$ $\rightarrow 46$ $1.11E+10$ $\rightarrow 15$ $1.87E+12$ 257 $1.39E+12$ $\rightarrow 52$ $2.66E+11$ $\rightarrow 50$ $5.01E+10$ $\rightarrow 61$ $3.91E+10$ $\rightarrow 81$ $3.01E+10$ $\rightarrow 67$ $1.91E+12$ 258 $2.90E+11$ $\rightarrow 16$ $9.83E+10$ $\rightarrow 15$ $4.26E+10$ $\rightarrow 64$ $1.86E+10$ $\rightarrow 62$ $1.40E+10$ $\rightarrow 76$ $5.25E+11$ 259 $3.96E+11$ $\rightarrow 15$ $6.48E+10$ $\rightarrow 63$ $2.29E+10$ $\rightarrow 53$ $1.81E+10$ $\rightarrow 62$ $5.14E+09$ $\rightarrow 57$ $5.19E+11$ 260 $4.48E+11$ $\rightarrow 4$ $2.07E+11$ $\rightarrow 44$ $3.151E+11$ $\rightarrow 38$ $2.61E+10$ $\rightarrow 51$ $2.47E+10$ $\rightarrow 47$ $9.55E+11$ 261 $2.81E+11$ $\rightarrow 4$ $2.07E+11$ $\rightarrow 45$ $2.01E+11$ $\rightarrow 2$ $1.16E+11$ $\rightarrow 3$ $7.03E+10$ $\rightarrow 70$ $4.80E+11$ 262 $2.38E+11$ $\rightarrow 16$ $8.01E+10$ $\rightarrow 13$ $3.40E+10$ $\rightarrow 72$ $3.17E+10$ $\rightarrow 14$ $1.85E+10$ $\rightarrow 70$ $4.80E+11$ 263 $3.15E+10$ $\rightarrow 191$ $2.64E+10$ $\rightarrow 163$ $8.79E+09$ $\rightarrow 166$ $8.16E+09$ $\rightarrow 196$ $7.19E+09$ $\rightarrow 182$ $1.29E+11$ 264 $3.10E+10$ $\rightarrow 197$ $1.47E+10$ $\rightarrow 170$ $9.07E+09$ $\rightarrow 175$ $8.71E+09$	254	1.99E+12	$\rightarrow 46$	8.72E+09	$\rightarrow 95$	2.81E+09	$\rightarrow 62$	5.34E+08	$\rightarrow 19$	1.85E+08	$\rightarrow 237$	2.00E+12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	255	1.41E+12	$\rightarrow 50$	1.76E+11	$\rightarrow 53$	8.46E+10	$\rightarrow 71$	4.80E+10	$\rightarrow 56$	4.56E+10	$\rightarrow 65$	1.90E+12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	256	1.49E+12	$\rightarrow 53$	2.49E+11	$\rightarrow 68$	6.28E+10	$\rightarrow 57$	1.86E+10	$\rightarrow 46$	1.11E+10	$\rightarrow 15$	1.87E+12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	257	1.39E+12	$\rightarrow 52$	2.66E+11	$\rightarrow 50$	5.01E+10	$\rightarrow 61$	3.91E+10	$\rightarrow 81$	3.01E+10	$\rightarrow 67$	1.91E+12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	258	2.90E+11	$\rightarrow 16$	9.83E+10	$\rightarrow 15$	4.26E+10	$\rightarrow 64$	1.86E+10	$\rightarrow 62$	1.40E+10	$\rightarrow 76$	5.25E+11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	259	3.96E+11	$\rightarrow 15$	6.48E+10	$\rightarrow 63$	2.29E+10	$\rightarrow 53$	1.81E+10	$\rightarrow 62$	5.14E+09	$\rightarrow 57$	5.19E+11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	260	4.48E+11	$\rightarrow 3$	2.61E+11	$\rightarrow 43$	1.51E+11	$\rightarrow 38$	2.61E+10	$\rightarrow 51$	2.47E+10	$\rightarrow 4'/$	9.55E+11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	261	2.81E+11	$\rightarrow 4$	2.0/E+11	$\rightarrow 45$	2.01E+11	$\rightarrow 2$	1.16E+11	$\rightarrow 3$	7.03E+10	$\rightarrow 38$	1.20E+12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	262	2.38E+11	$\rightarrow 16$	8.01E+10	$\rightarrow 13$	3.40E+10	$\rightarrow 72$	3.17E+10	$\rightarrow 14$	1.85E+10	$\rightarrow 70$	4.80E+11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	263	3.15E+10	\rightarrow 191	2.64E+10	$\rightarrow 163$	8./9E+09	$\rightarrow 166$	8.16E+09	\rightarrow 196	7.19E+09	$\rightarrow 182$	1.29E+11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	264	3.10E+11	$\rightarrow 15$	3.11E+10	$\rightarrow /1$	2.90E+10	$\rightarrow /4$	2.56E+10	$\rightarrow 13$	2.26E+10	$\rightarrow 10$	4./6E+11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	265	5.95E+10	$\rightarrow 3$	2.88E+10	$\rightarrow 197$	1.4/E+10	$\rightarrow 1/0$	9.0/E+09	$\rightarrow 1/5$	8./IE+09	$\rightarrow 188$	1.80E+11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	200	$4.90E \pm 10$	$\rightarrow 4$	5.10E+10	$\rightarrow 192$	1.02E+10	$\rightarrow 104$	1.31E+10	$\rightarrow 197$	1.55E+10	$\rightarrow 1/2$	1./9E+11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	207	5.19E+11	$\rightarrow 10$	4.96E + 10	$\rightarrow 70$	$2.44E \pm 10$ $2.07E \pm 11$	$\rightarrow 73$	$2.16E \pm 10$ 1.97E ± 11	$\rightarrow 13$	J./JE+09	$\rightarrow 74$	4.00E+11 1.45E+12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	200	$5.10E \pm 11$	$\rightarrow 3$	2.23E + 11	→ 4 、5	$2.07E \pm 11$	$\rightarrow 40$	1.0/E + 11 1.16E + 11	$\rightarrow 1$	1.01E + 11	$\rightarrow 34$	1.43E + 12 1.74E + 12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	209	7.31E + 11	$\rightarrow +$	J.JOLTII	$\rightarrow 3$	1.55E+11	~ J+	$3.48E \pm 11$	$\rightarrow 1$	$0.42E \pm 10$	$\rightarrow 2$	1.740 ± 12 $2.20E\pm 12$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	270	7.312 ± 11 7.28E ± 11	$\rightarrow 1$ $\rightarrow 20$	$4.02E \pm 11$ 2.64E \pm 11	$\rightarrow 3$ $\rightarrow 4$	$1.85E \pm 11$	$\rightarrow 27$ $\rightarrow 28$	$1.546E \pm 11$	$\rightarrow 20$ $\rightarrow 1$	$9.42E \pm 10$ 3.80E ± 0.0	$\rightarrow 31$ $\rightarrow 33$	$1.35E \pm 12$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	271	$5.61E \pm 11$	$\rightarrow 29$ $\rightarrow 30$	2.04E+11 3.63E+11	\rightarrow \rightarrow \rightarrow 32	$3.70E \pm 00$	$\rightarrow 20$ $\rightarrow 34$	$2.00E \pm 00$	$\rightarrow 1$ $\rightarrow 18$	1.16F±09	$\rightarrow 33$ $\rightarrow 244$	$0.35E \pm 11$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	272	3.012 ± 11 8.00E ± 11	$\rightarrow 30$ $\rightarrow 2$	$4.93E \pm 11$	$\rightarrow 32$ $\rightarrow 27$	$3.70E \pm 0.9$ $3.78E \pm 11$	$\rightarrow 34$ $\rightarrow 1$	$2.90E \pm 0.90E \pm 1.1$	$\rightarrow 40$ $\rightarrow 4$	1.10 ± 0.9 $1.82E\pm11$	$\rightarrow 244$ $\rightarrow 5$	$9.35E \pm 11$ 2 48E ± 12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	273	$5.00E \pm 11$	$\rightarrow 27$	$2.87E \pm 11$	$\rightarrow 3$	$2.76E \pm 11$	\rightarrow 31	$5.72E \pm 10$	$\rightarrow 36$	$4.07E \pm 10$	$\rightarrow 43$	$1.70E \pm 12$
$276 3.71E+12 \rightarrow 3 6.94E+11 \rightarrow 1 4.79E+11 \rightarrow 4 3.04E+11 \rightarrow 36 2.60E+11 \rightarrow 29 5.79E+12$	275	$1.95E \pm 12$	$\rightarrow 1$	$4.44F \pm 11$	$\rightarrow 28$	$2.20E \pm 11$ 273E \pm 11	$\rightarrow 30$	$1.72E \pm 10$ 1.74F ± 11	$\rightarrow 4$	$8.67E \pm 10$	$\rightarrow 20$	$3.01E \pm 12$
2.5 5.112 + 12 (5) 0.512 + 11 (1) (1.7)2 + 11 (7) 5.072 + 11 (50) 2.002 + 11 (7) (5)	276	3.71F+12	\rightarrow 3	6.94F+11	$\rightarrow 1$	4.79F+11	$\rightarrow 4$	3.04F+11	$\rightarrow 36$	2.60F+11	$\rightarrow 29$ $\rightarrow 29$	5.01E + 12 5.79F+12
277 196E+12 \rightarrow 3 118E+12 \rightarrow 2 478E+11 \rightarrow 1 393E+11 \rightarrow 4 286E+11 \rightarrow 35 512E+12	277	1.96F+12	$\rightarrow 3$	1.18F+12	$\rightarrow 2$	4.78F+11	$\rightarrow 1$	3.93F+11	$\rightarrow 4$	2.86F + 11	$\rightarrow 35$	5.12E+12

V. Jonauskas et al.: Transition rates for Fe xix, Online Material p 23

Table 5. continued.

Index	A^{r} (s ⁻¹)	final	A^{r} (s ⁻¹)	final	A^{r} (s ⁻¹)	final	A^{r} (s ⁻¹)	final	A^{r} (s ⁻¹)	final	$\sum A^r (\mathbf{s}^{-1})$
		level		level		level		level		level	
278	2.66E+11	$\rightarrow 21$	1.44E+11	$\rightarrow 20$	5.43E+10	$\rightarrow 77$	2.01E+10	$\rightarrow 81$	1.90E+10	$\rightarrow 73$	5.45E+11
279	3.49E+11	$\rightarrow 34$	3.32E+11	$\rightarrow 32$	1.68E+11	$\rightarrow 30$	8.24E+10	$\rightarrow 33$	3.08E+09	$\rightarrow 101$	9.40E+11
280	9.32E+11	$\rightarrow 34$	1.14E+09	$\rightarrow 259$	7.36E+08	$\rightarrow 192$	3.81E+08	$\rightarrow 176$	3.24E+08	$\rightarrow 172$	9.35E+11
281	7.90E+11	$\rightarrow 33$	7.21E+10	$\rightarrow 32$	6.40E+10	$\rightarrow 30$	1.18E+09	$\rightarrow 48$	8.87E+08	$\rightarrow 258$	9.31E+11
282	3.77E+12	$\rightarrow 1$	3.26E+11	$\rightarrow 32$	2.57E+11	$\rightarrow 37$	1.38E+11	$\rightarrow 30$	7.69E+10	$\rightarrow 33$	4.72E+12
283	2.52E+11	$\rightarrow 20$	1.20E+11	$\rightarrow 21$	5.89E+10	$\rightarrow 80$	3.28E+10	$\rightarrow 77$	9.54E+09	$\rightarrow 81$	5.10E+11
284	3.90E+11	$\rightarrow 21$	7.70E+10	$\rightarrow 78$	1.28E+10	$\rightarrow 80$	5.16E+09	$\rightarrow 25$	3.64E+09	$\rightarrow 89$	5.14E+11
285	3.02E+12	$\rightarrow 3$	3.57E+11	$\rightarrow 36$	2.97E+11	$\rightarrow 31$	1.28E+11	$\rightarrow 38$	6.23E+10	$\rightarrow 47$	3.94E+12
286	5.63E+12	$\rightarrow 1$	4.24E+11	$\rightarrow 37$	1.54E+11	$\rightarrow 32$	1.03E+11	$\rightarrow 3$	8.74E+10	$\rightarrow 30$	6.66E+12
287	2.04E+12	$\rightarrow 3$	1.30E+12	$\rightarrow 1$	7.43E+11	$\rightarrow 4$	2.24E+11	$\rightarrow 31$	1.88E+11	$\rightarrow 36$	5.09E+12
288	3.27E+13	$\rightarrow 10$	4.81E+11	$\rightarrow 1$	2.04E+11	$\rightarrow 5$	1.12E+11	$\rightarrow 4$	8.45E+10	$\rightarrow 3$	3.38E+13
289	3.81E+11	$\rightarrow 21$	8.43E+10	$\rightarrow 81$	1.27E+10	$\rightarrow 86$	5.41E+09	$\rightarrow 67$	3.42E+09	$\rightarrow 9$	5.00E+11
290	4.67E+12	$\rightarrow 1$	2.95E+12	$\rightarrow 10$	1.50E+12	$\rightarrow 4$	4.47E+11	$\rightarrow 37$	3.34E+11	$\rightarrow 3$	1.04E+13
291	1.17E+12	$\rightarrow 56$	1.68E+11	$\rightarrow 50$	1.49E+11	$\rightarrow 59$	1.39E+11	$\rightarrow 71$	1.14E+11	$\rightarrow 57$	2.01E+12
292	5.53E+12	$\rightarrow 4$	5.03E+11	$\rightarrow 3$	3.96E+11	$\rightarrow 39$	1.87E+11	$\rightarrow 31$	8.35E+10	$\rightarrow 55$	6.94E+12
293	8.19E+11	$\rightarrow 57$	2.53E+11	$\rightarrow 59$	2.50E+11	$\rightarrow 60$	2.28E+11	$\rightarrow 76$	1.90E+11	$\rightarrow 53$	1.98E+12
294	1.22E+12	$\rightarrow 61$	4.26E+11	$\rightarrow 56$	6.87E+10	$\rightarrow 71$	5.43E+10	$\rightarrow 52$	5.31E+10	$\rightarrow 65$	2.06E+12
295	1.62E+12	$\rightarrow 59$	1.24E+11	$\rightarrow 68$	1.03E+11	$\rightarrow 57$	4.25E+10	$\rightarrow 60$	1.92E+10	$\rightarrow 53$	1.93E+12
296	1.67E+12	$\rightarrow 60$	2.35E+11	$\rightarrow 62$	1.50E+10	$\rightarrow 64$	4.48E+09	$\rightarrow 83$	2.17E+09	$\rightarrow 63$	1.93E+12
297	1.33E+12	$\rightarrow 65$	1.98E+11	$\rightarrow 57$	9.03E+10	$\rightarrow 59$	5.88E+10	$\rightarrow 53$	5.64E+10	$\rightarrow 76$	2.01E+12
298	6.59E+12	$\rightarrow 4$	4.76E+11	$\rightarrow 1$	4.67E+11	$\rightarrow 39$	2.38E+11	$\rightarrow 33$	1.09E+11	$\rightarrow 55$	7.95E+12
299	7.07E+11	$\rightarrow 58$	6.57E+11	$\rightarrow 61$	2.28E+11	$\rightarrow 70$	1.70E+11	$\rightarrow 67$	5.55E+10	$\rightarrow 65$	2.07E+12
300	8.26E+11	$\rightarrow 67$	5.09E+11	$\rightarrow 72$	4.36E+11	$\rightarrow 65$	3.68E+10	$\rightarrow 74$	3.26E+10	$\rightarrow 81$	2.00E+12
301	3.03E+11	$\rightarrow 25$	8.26E+10	$\rightarrow 26$	3.78E+10	$\rightarrow 86$	3.59E+10	$\rightarrow 85$	1.66E+10	$\rightarrow 84$	5.20E+11
302	3.96E+11	$\rightarrow 25$	7.41E+10	$\rightarrow 83$	1.50E+10	$\rightarrow 87$	9.58E+09	$\rightarrow 71$	7.10E+09	$\rightarrow 89$	5.31E+11
303	1.69E+12	$\rightarrow 64$	9.41E+10	$\rightarrow 62$	8.37E+10	$\rightarrow 63$	5.33E+10	$\rightarrow 60$	2.50E+08	$\rightarrow 33$	1.93E+12
304	1.92E+12	$\rightarrow 63$	5.29E+08	$\rightarrow 34$	1.42E+08	$\rightarrow 280$	8.41E+04	$\rightarrow 15$	5.60E+04	$\rightarrow 64$	1.92E+12
305	4.90E+11	$\rightarrow 57$	4.48E+11	$\rightarrow 68$	4.00E+11	$\rightarrow 62$	2.50E+11	$\rightarrow 76$	1.60E+11	$\rightarrow 64$	1.98E+12
306	1.29E+12	$\rightarrow 62$	3.27E+11	$\rightarrow 63$	2.03E+11	$\rightarrow 64$	1.28E+11	$\rightarrow 60$	2.62E+10	$\rightarrow 83$	1.98E+12
307	2.35E+11	$\rightarrow 26$	1.15E+11	$\rightarrow 72$	8.30E+10	$\rightarrow 74$	7.08E+10	$\rightarrow 71$	6.49E+10	$\rightarrow 25$	7.96E+11
308	6.57E+11	$\rightarrow 71$	3.67E+11	$\rightarrow 68$	3.63E+11	$\rightarrow 57$	1.53E+11	$\rightarrow 56$	1.03E+11	$\rightarrow 76$	2.00E+12
309	5.11E+11	$\rightarrow 71$	3.07E+11	$\rightarrow 72$	1.47E+11	$\rightarrow 56$	1.30E+11	$\rightarrow 67$	7.22E+10	$\rightarrow 26$	1.61E+12
310	7.97E+11	$\rightarrow 76$	3.85E+11	$\rightarrow 68$	2.06E+11	$\rightarrow 62$	1.93E+11	$\rightarrow 64$	1.32E+11	$\rightarrow 89$	1.94E+12
311	2.95E+11	$\rightarrow 71$	2.03E+11	$\rightarrow 26$	1.94E+11	$\rightarrow 74$	1.48E+11	$\rightarrow 73$	1.01E+11	$\rightarrow 68$	1.20E+12
312	4.97E+11	$\rightarrow 72$	2.72E+11	$\rightarrow 71$	2.57E+11	$\rightarrow 74$	2.29E+11	$\rightarrow 70$	1.46E+11	$\rightarrow 67$	1.80E+12
313	7.46E+11	$\rightarrow 73$	3.16E+11	$\rightarrow 76$	2.77E+11	$\rightarrow 68$	1.56E+11	$\rightarrow 80$	1.15E+11	$\rightarrow 77$	1.97E+12
314	1.57E+12	$\rightarrow 74$	3.33E+11	$\rightarrow 72$	3.11E+10	$\rightarrow 67$	2.36E+10	$\rightarrow 81$	2.11E+10	$\rightarrow 86$	2.04E+12
315	4.20E+11	$\rightarrow 73$	2.62E+11	$\rightarrow 74$	2.52E+11	$\rightarrow 67$	2.39E+11	$\rightarrow 72$	8.77E+10	$\rightarrow 77$	1.69E+12
316	8.44E+11	$\rightarrow 74$	4.17E+11	$\rightarrow 70$	1.83E+11	$\rightarrow 58$	1.81E+11	$\rightarrow 73$	1.15E+11	$\rightarrow 67$	2.06E+12
317	2.81E+11	$\rightarrow 25$	8.63E+10	$\rightarrow 26$	5.79E+10	$\rightarrow 87$	4.28E+10	$\rightarrow 73$	3.18E+10	$\rightarrow 74$	5.99E+11
318	7.06E+11	$\rightarrow 38$	5.63E+11	$\rightarrow 4$	1.08E+11	$\rightarrow 45$	5.35E+10	$\rightarrow 3$	4.74E+10	$\rightarrow 31$	1.56E+12
319	3.35E+11	$\rightarrow 26$	8.74E+10	$\rightarrow 92$	3.18E+09	$\rightarrow 269$	2.71E+09	$\rightarrow 184$	2.34E+09	$\rightarrow 74$	4.45E+11
320	2.31E+12	$\rightarrow 3$	7.17E+11	$\rightarrow 43$	4.82E+11	$\rightarrow 4$	7.81E+10	$\rightarrow 45$	4.49E+10	$\rightarrow 47$	3.73E+12
321	1.44E+12	$\rightarrow 4$	8.16E+11	$\rightarrow 45$	2.17E+11	$\rightarrow 1$	5.24E+10	$\rightarrow 39$	4.53E+10	$\rightarrow 55$	2.60E+12
322	5.17E+12	$\rightarrow 2$	4.44E+11	$\rightarrow 49$	4.03E+11	$\rightarrow 3$	3.33E+11	$\rightarrow 10$	2.28E+11	$\rightarrow 5$	7.15E+12

Table 5. continued.

Index	$A^{r}(s^{-1})$	final	$A^{r}(s^{-1})$	final	A^{r} (s ⁻¹)	final	$A^{r}(s^{-1})$	final	$A^{r}(s^{-1})$	final	$\sum A^r (s^{-1})$
		level		level		level		level		level	
323	9.36E+11	$\rightarrow 48$	6.36E+09	$\rightarrow 30$	4.62E+09	$\rightarrow 33$	2.36E+09	$\rightarrow 101$	1.11E+09	$\rightarrow 302$	9.54E+11
324	4.49E+12	$\rightarrow 3$	3.61E+11	$\rightarrow 51$	3.14E+11	$\rightarrow 47$	1.42E+11	$\rightarrow 36$	9.67E+10	$\rightarrow 43$	5.44E+12
325	4.34E+11	$\rightarrow 47$	3.35E+11	$\rightarrow 54$	2.93E+11	$\rightarrow 1$	2.25E+11	$\rightarrow 3$	7.25E+10	$\rightarrow 51$	1.47E+12
326	3.43E+12	$\rightarrow 3$	3.50E+11	$\rightarrow 4$	3.26E+11	$\rightarrow 5$	3.08E+11	$\rightarrow 47$	1.96E+11	$\rightarrow 51$	5.21E+12
327	1.26E+12	$\rightarrow 77$	4.02E+11	$\rightarrow 73$	8.42E+10	$\rightarrow 78$	6.37E+10	$\rightarrow 80$	5.07E+10	$\rightarrow 56$	2.01E+12
328	1.53E+12	$\rightarrow 78$	2.10E+11	$\rightarrow 89$	1.55E+11	$\rightarrow 76$	4.07E+10	$\rightarrow 57$	2.52E+10	$\rightarrow 87$	1.98E+12
329	1.17E+12	$\rightarrow 81$	2.35E+11	$\rightarrow 86$	1.79E+11	$\rightarrow 80$	9.49E+10	$\rightarrow 67$	9.37E+10	$\rightarrow 92$	2.01E+12
330	1.24E+12	$\rightarrow 80$	3.41E+11	$\rightarrow 77$	1.72E+11	$\rightarrow 71$	1.23E+11	$\rightarrow 73$	9.23E+10	$\rightarrow 78$	2.04E+12
331	6.73E+11	$\rightarrow 1$	6.37E+11	$\rightarrow 54$	2.29E+11	$\rightarrow 48$	1.01E+11	$\rightarrow 4$	3.13E+10	$\rightarrow 55$	1.71E+12
332	5.67E+12	$\rightarrow 4$	5.16E+11	$\rightarrow 55$	1.29E+11	$\rightarrow 39$	1.22E+11	$\rightarrow 54$	7.08E+10	$\rightarrow 45$	6.60E+12
333	2.38E+12	$\rightarrow 4$	1.77E+12	$\rightarrow 3$	4.05E+11	$\rightarrow 51$	2.65E+11	$\rightarrow 55$	1.50E+11	$\rightarrow 1$	5.22E+12
334	9.52E+12	$\rightarrow 5$	4.61E+11	$\rightarrow 66$	4.50E+11	$\rightarrow 10$	2.87E+11	$\rightarrow 4$	2.86E+11	$\rightarrow 3$	1.17E+13
335	9.31E+11	$\rightarrow 84$	7.81E+11	$\rightarrow 86$	9.36E+10	$\rightarrow 81$	8.11E+10	$\rightarrow 90$	5.22E+10	$\rightarrow 85$	2.09E+12
336	1.27E+12	$\rightarrow 89$	3.34E+11	$\rightarrow 78$	1.31E+11	$\rightarrow 87$	9.81E+10	$\rightarrow 76$	6.89E+10	$\rightarrow 83$	1.95E+12
337	1.94E+12	$\rightarrow 83$	2.96E+10	$\rightarrow 62$	2.20E+10	$\rightarrow 60$	3.57E+09	$\rightarrow 127$	3.16E+09	$\rightarrow 64$	2.00E+12
338	6.66E+11	$\rightarrow 86$	5.08E+11	$\rightarrow 85$	3.12E+11	$\rightarrow 92$	3.02E+11	$\rightarrow 81$	1.09E+11	$\rightarrow 90$	2.07E+12
339	1.26E+12	$\rightarrow 85$	4.36E+11	$\rightarrow 87$	1.33E+11	$\rightarrow 90$	6.08E+10	$\rightarrow 89$	3.80E+10	$\rightarrow 65$	2.04E+12
340	1.12E+12	$\rightarrow 92$	4.34E+11	$\rightarrow 90$	2.23E+11	$\rightarrow 86$	2.47E+10	$\rightarrow 52$	2.43E+10	$\rightarrow 89$	1.95E+12
341	1.14E+12	$\rightarrow 90$	2.56E+11	$\rightarrow 85$	2.34E+11	$\rightarrow 89$	8.47E+10	$\rightarrow 73$	7.21E+10	$\rightarrow 77$	1.97E+12
342	1.61E+12	$\rightarrow 87$	2.60E+11	$\rightarrow 83$	5.65E+10	$\rightarrow 89$	3.89E+10	$\rightarrow 76$	7.83E+09	$\rightarrow 62$	1.99E+12
343	2.11E+11	$\rightarrow 95$	1.64E+11	$\rightarrow 93$	1.02E+11	$\rightarrow 94$	1.63E+10	$\rightarrow 211$	1.48E+10	$\rightarrow 107$	5.35E+11
344	5.98E+11	$\rightarrow 6$	2.13E+11	$\rightarrow 97$	1.27E+11	$\rightarrow 7$	7.05E+10	$\rightarrow 98$	5.69E+10	$\rightarrow 106$	1.25E+12
345	2.21E+11	$\rightarrow 105$	1.55E+11	$\rightarrow 6$	9.03E+10	$\rightarrow 106$	6.60E+10	$\rightarrow 7$	4.39E+10	$\rightarrow 96$	7.49E+11
346	1.67E+11	$\rightarrow 107$	9.59E+10	$\rightarrow 7$	9.10E+10	$\rightarrow 98$	8.68E+10	$\rightarrow 102$	5.85E+10	$\rightarrow 8$	7.46E+11
347	3.94E+11	$\rightarrow 69$	8.14E+10	$\rightarrow 1$	4.25E+10	$\rightarrow 115$	3.34E+10	$\rightarrow 116$	1.35E+10	$\rightarrow 118$	6.18E+11
348	3.60E+11	$\rightarrow 69$	1.16E+11	$\rightarrow 1$	3.73E+10	$\rightarrow 118$	2.96E+10	$\rightarrow 75$	2.84E+10	$\rightarrow 120$	6.56E+11
349	4.61E+11	$\rightarrow 6$	2.33E+11	$\rightarrow 111$	1.98E+11	$\rightarrow 7$	1.98E+11	$\rightarrow 8$	1.14E+11	$\rightarrow 110$	1.39E+12
350	3.99E+11	$\rightarrow 69$	7.26E+10	$\rightarrow 122$	1.92E+10	$\rightarrow 115$	1.31E+10	$\rightarrow 218$	4.95E+09	$\rightarrow 116$	5.18E+11
351	1.80E+12	$\rightarrow 1$	2.19E+11	$\rightarrow 75$	1.67E+11	$\rightarrow 82$	5.49E+10	$\rightarrow 126$	4.19E+10	$\rightarrow 4$	2.38E+12
352	1.05E+12	$\rightarrow 7$	3.55E+11	$\rightarrow 112$	7.76E+10	$\rightarrow 110$	3.43E+10	$\rightarrow 140$	1.80E+10	$\rightarrow 213$	1.58E+12
353	1.65E+12	$\rightarrow 1$	2.82E+11	$\rightarrow 75$	9.30E+10	$\rightarrow 82$	3.99E+10	$\rightarrow 4$	2.16E+10	$\rightarrow 147$	2.24E+12
354	1.53E+12	$\rightarrow 1$	2.05E+11	$\rightarrow 75$	1.12E+11	$\rightarrow 82$	9.34E+10	$\rightarrow 3$	3.71E+10	$\rightarrow 131$	2.17E+12
355	9.18E+11	$\rightarrow 1$	2.69E+11	$\rightarrow 82$	1.17E+11	$\rightarrow 75$	1.03E+11	$\rightarrow 3$	2.95E+10	$\rightarrow 147$	1.61E+12
356	4.68E+11	$\rightarrow 1$	2.16E+11	$\rightarrow 82$	1.79E+11	$\rightarrow 75$	5.96E+10	$\rightarrow 138$	1.53E+10	$\rightarrow 126$	1.00E+12
357	7.54E+11	$\rightarrow 1$	2.33E+11	$\rightarrow 82$	1.08E+11	$\rightarrow 75$	4.89E+10	$\rightarrow 79$	4.26E+10	$\rightarrow 3$	1.35E+12
358	3.63E+11	$\rightarrow 79$	2.19E+11	$\rightarrow 3$	1.26E+11	$\rightarrow 2$	7.00E+10	$\rightarrow 137$	2.48E+10	$\rightarrow 91$	9.00E+11
359	4.12E+11	$\rightarrow 79$	9.92E+10	$\rightarrow 139$	2.66E+10	$\rightarrow 3$	1.87E+10	$\rightarrow 216$	6.30E+09	$\rightarrow 129$	5.71E+11
360	6.77E+11	$\rightarrow 3$	2.29E+11	$\rightarrow 79$	8.88E+10	$\rightarrow 88$	3.52E+10	$\rightarrow 142$	3.41E+10	$\rightarrow 75$	1.21E+12
361	1.79E+12	$\rightarrow 3$	3.12E+11	$\rightarrow 88$	1.02E+11	$\rightarrow 2$	6.10E+10	$\rightarrow 149$	3.41E+10	$\rightarrow 79$	2.45E+12
362	5.63E+11	$\rightarrow 93$	3.51E+11	$\rightarrow 95$	2.72E+10	$\rightarrow 97$	6.67E+09	$\rightarrow 235$	4.87E+09	$\rightarrow 237$	9.60E+11
363	5.65E+11	$\rightarrow 93$	2.64E+11	$\rightarrow 94$	8.29E+10	$\rightarrow 95$	1.26E+10	$\rightarrow 105$	7.93E+09	$\rightarrow 232$	9.59E+11
364	1.41E+12	$\rightarrow 3$	2.69E+11	$\rightarrow 88$	9.70E+10	$\rightarrow 79$	8.76E+10	$\rightarrow 1$	6.89E+10	$\rightarrow 152$	2.03E+12
365	2.10E+12	$\rightarrow 3$	3.68E+11	$\rightarrow 88$	1.06E+11	$\rightarrow 150$	1.94E+10	$\rightarrow 219$	5.73E+09	$\rightarrow 47$	2.63E+12
366	5.82E+11	$\rightarrow 94$	2.86E+11	$\rightarrow 93$	2.41E+10	$\rightarrow 107$	1.59E+10	$\rightarrow 96$	1.26E+10	$\rightarrow 7$	9.67E+11
367	9.29E+11	$\rightarrow 95$	6.85E+09	$\rightarrow 237$	1.07E+09	$\rightarrow 350$	9.75E+08	$\rightarrow 46$	6.73E+08	$\rightarrow 83$	9.40E+11
368	7.86E+11	$\rightarrow 94$	6.11E+10	$\rightarrow 107$	5.15E+10	$\rightarrow 7$	4.13E+10	$\rightarrow 96$	1.94E+10	$\rightarrow 6$	1.02E+12

V. Jonauskas et al.: Transition rates for Fe xix, Online Material p 25

Table 5. continued.

Index	$A^{r}(s^{-1})$	final	A^{r} (s ⁻¹)	final	$A^{r}(s^{-1})$	final	$A^{r}(s^{-1})$	final	$A^{r}(s^{-1})$	final	$\sum A^r (s^{-1})$
		level		level		level		level		level	
369	2.13E+12	$\rightarrow 2$	3.25E+11	$\rightarrow 91$	2.35E+11	$\rightarrow 3$	9.49E+10	$\rightarrow 154$	8.42E+10	$\rightarrow 5$	3.01E+12
370	8.61E+11	$\rightarrow 97$	2.63E+10	$\rightarrow 93$	1.30E+10	$\rightarrow 105$	5.12E+09	$\rightarrow 242$	2.61E+09	$\rightarrow 95$	9.18E+11
371	1.58E+12	$\rightarrow 7$	6.69E+11	$\rightarrow 96$	2.15E+11	$\rightarrow 104$	1.38E+10	$\rightarrow 102$	1.22E+10	$\rightarrow 241$	2.52E+12
372	1.48E+12	$\rightarrow 6$	1.29E+12	$\rightarrow 7$	4.38E+11	$\rightarrow 96$	1.54E+11	$\rightarrow 104$	1.30E+11	$\rightarrow 98$	3.70E+12
373	3.59E+12	$\rightarrow 6$	3.31E+11	$\rightarrow 98$	2.80E+11	$\rightarrow 97$	1.83E+11	$\rightarrow 106$	3.55E+10	$\rightarrow 94$	4.51E+12
374	3.52E+12	$\rightarrow 6$	8.94E+11	$\rightarrow 7$	2.53E+11	$\rightarrow 98$	1.86E+11	$\rightarrow 96$	1.33E+11	$\rightarrow 106$	5.33E+12
375	1.15E+12	$\rightarrow 116$	6.19E+11	$\rightarrow 115$	9.57E+10	$\rightarrow 126$	4.20E+10	$\rightarrow 122$	3.15E+10	$\rightarrow 145$	1.99E+12
376	1.52E+12	$\rightarrow 115$	3.95E+11	$\rightarrow 122$	3.25E+10	$\rightarrow 138$	1.36E+10	$\rightarrow 126$	4.54E+09	$\rightarrow 254$	1.97E+12
377	8.43E+11	$\rightarrow 116$	7.94E+11	$\rightarrow 118$	1.05E+11	$\rightarrow 115$	9.40E+10	$\rightarrow 148$	5.11E+10	$\rightarrow 131$	1.99E+12
378	1.90E+12	$\rightarrow 122$	3.45E+09	$\rightarrow 254$	5.03E+08	$\rightarrow 95$	2.21E+08	$\rightarrow 296$	1.67E+08	$\rightarrow 304$	1.90E+12
379	1.00E+12	$\rightarrow 118$	4.71E+11	$\rightarrow 120$	2.57E+11	$\rightarrow 116$	8.89E+10	$\rightarrow 147$	5.95E+10	$\rightarrow 148$	2.00E+12
380	5.86E+11	$\rightarrow 131$	3.68E+11	$\rightarrow 142$	2.68E+11	$\rightarrow 145$	2.10E+11	$\rightarrow 152$	1.61E+11	$\rightarrow 126$	1.87E+12
381	1.35E+12	$\rightarrow 126$	5.02E+11	$\rightarrow 138$	4.98E+09	$\rightarrow 122$	2.41E+09	$\rightarrow 115$	2.15E+09	$\rightarrow 256$	1.86E+12
382	5.93E+11	$\rightarrow 148$	4.58E+11	$\rightarrow 133$	1.86E+11	$\rightarrow 131$	1.73E+11	$\rightarrow 142$	1.15E+11	$\rightarrow 116$	1.88E+12
383	1.03E+12	$\rightarrow 120$	5.33E+11	$\rightarrow 118$	1.72E+11	$\rightarrow 129$	6.31E+10	$\rightarrow 125$	5.14E+10	$\rightarrow 146$	2.00E+12
384	1.31E+12	$\rightarrow 120$	6.5/E+11	$\rightarrow 129$	1.41E+10	$\rightarrow 253$	3./3E+09	$\rightarrow 1/$	2.89E+09	$\rightarrow 139$	1.99E+12
385	1.83E+12	\rightarrow /	3.44E+11	$\rightarrow 104$	2.95E+11	$\rightarrow 102$	2.28E+11	$\rightarrow 96$	1./0E+10	$\rightarrow 110$	2.//E+12
380	5.23E+11	$\rightarrow 14/$	3.46E+11	$\rightarrow 133$	3.43E+11	$\rightarrow 148$	3.39E+11	$\rightarrow 129$	0.85E+10	$\rightarrow 118$	1.90E+12
38/ 200	9.01E+11	$\rightarrow 105$	2.14E+10	$\rightarrow 9/$	9.27E+09	$\rightarrow 237$	5.//E+09	$\rightarrow 95$	2.21E+09	$\rightarrow 242$	9.45E+11
280 280	9.80E+10	$\rightarrow 19$ $\rightarrow 147$	0.19E+10	$\rightarrow 18$	5.90E+10	$\rightarrow 218$	4.11E+10	$\rightarrow 217$	3.8/E+10	$\rightarrow 1/$	3.83E+11
309	4.4/E+11 1 20E + 12	$\rightarrow 147$	4.3/E+11	$\rightarrow 129$	$4.21E \pm 11$	$\rightarrow 140$	2.09E + 11	$\rightarrow 123$	$0.01E \pm 10$ 1.75E ± 11	$\rightarrow 133$	1.91E+12
301	$1.29E \pm 12$ 1 21E ± 12	\rightarrow 6	$5.49E \pm 11$	$\rightarrow 0$ $\rightarrow 7$	2.70 ± 11 2.85E ±11	$\rightarrow 104$ $\rightarrow 106$	1.972 ± 11 $1.44E \pm 11$	$\rightarrow 90$ $\rightarrow 107$	1.75 ± 11 $1.24E\pm11$	$\rightarrow 102$ $\rightarrow 104$	$2.60E \pm 12$ 2.60E ± 12
392	$8.59E \pm 11$	$\rightarrow 6$	3.79E+11	$\rightarrow 106$	2.03E+11 2 77E+11	$\rightarrow 100$	1.44E+11	$\rightarrow 98$	4.94E + 10	$\rightarrow 107$	1.79E + 12
393	2.52E+11	$\rightarrow 1$	9.17E+10	$\rightarrow 23$	6.83E+10	$\rightarrow 220$	6.02E+10	$\rightarrow 22$	4.54E + 10 4 56E+10	$\rightarrow 219$	7.14F+11
394	4.66E+11	$\rightarrow 102$	1.99E+11	$\rightarrow 7$	1.53E+11	$\rightarrow 104$	1.10E+11	$\rightarrow 107$	9.34E+10	$\rightarrow 6$	1.23E+12
395	5.94E+11	$\rightarrow 107$	4.83E+11	$\rightarrow 6$	2.06E+11	$\rightarrow 98$	3.05E+10	$\rightarrow 94$	2.61E+10	$\rightarrow 237$	1.42E+12
396	5.81E+11	$\rightarrow 8$	4.31E+11	$\rightarrow 103$	2.75E+11	$\rightarrow 7$	2.56E+11	$\rightarrow 102$	8.52E+10	$\rightarrow 104$	1.79E+12
397	8.68E+11	$\rightarrow 8$	3.24E+11	$\rightarrow 7$	1.58E+11	$\rightarrow 121$	1.25E+11	$\rightarrow 132$	6.87E+10	$\rightarrow 143$	1.84E+12
398	6.03E+11	$\rightarrow 7$	1.27E+11	$\rightarrow 124$	7.79E+10	$\rightarrow 130$	6.39E+10	$\rightarrow 128$	5.80E+10	$\rightarrow 140$	1.20E+12
399	7.69E+11	$\rightarrow 6$	5.98E+11	$\rightarrow 110$	2.20E+11	$\rightarrow 7$	1.67E+11	$\rightarrow 111$	2.71E+10	$\rightarrow 104$	1.88E+12
400	3.81E+12	$\rightarrow 6$	4.49E+11	$\rightarrow 111$	7.48E+10	$\rightarrow 141$	5.83E+10	$\rightarrow 127$	5.02E+10	$\rightarrow 134$	4.63E+12
401	2.96E+12	$\rightarrow 8$	9.37E+11	$\rightarrow 7$	3.71E+11	$\rightarrow 108$	2.55E+11	$\rightarrow 110$	4.24E+10	$\rightarrow 103$	4.79E+12
402	5.74E+11	$\rightarrow 6$	2.78E+11	$\rightarrow 111$	1.46E+11	$\rightarrow 127$	6.26E+10	$\rightarrow 134$	2.56E+10	$\rightarrow 226$	1.20E+12
403	2.11E+11	$\rightarrow 11$	7.71E+10	$\rightarrow 211$	4.48E+10	$\rightarrow 8$	1.90E+10	$\rightarrow 236$	1.85E+10	$\rightarrow 44$	4.57E+11
404	1.73E+11	$\rightarrow 11$	6.31E+10	$\rightarrow 211$	5.70E+10	$\rightarrow 7$	5.50E+10	$\rightarrow 6$	2.39E+10	$\rightarrow 107$	5.55E+11
405	1.92E+11	$\rightarrow 6$	1.80E+11	$\rightarrow 11$	7.07E+10	$\rightarrow 107$	6.94E+10	$\rightarrow 211$	4.66E+10	$\rightarrow 111$	6.34E+11
406	2.95E+12	$\rightarrow 7$	4.85E+11	$\rightarrow 112$	5.96E+10	$\rightarrow 12$	3.86E+10	$\rightarrow 242$	2.49E+10	$\rightarrow 110$	3.72E+12
407	5.83E+11	$\rightarrow 125$	4.17E+11	$\rightarrow 129$	3.16E+11	$\rightarrow 146$	3.14E+11	$\rightarrow 147$	1.42E+11	$\rightarrow 120$	2.01E+12
408	1.31E+12	$\rightarrow 138$	5.12E+11	$\rightarrow 126$	8.42E+10	$\rightarrow 115$	6.69E+09	$\rightarrow 254$	9.88E+08	$\rightarrow 172$	1.92E+12
409	8.18E+11	$\rightarrow 131$	7.10E+11	$\rightarrow 152$	1.62E+11	$\rightarrow 142$	7.99E+10	$\rightarrow 138$	3.20E+10	$\rightarrow 126$	1.87E+12
410	3.55E+11	$\rightarrow 9$	2.28E+11	$\rightarrow 7$	1.23E+11	$\rightarrow 135$	1.15E+11	$\rightarrow 128$	5.18E+10	$\rightarrow 134$	1.14E+12
411	4.79E+11	$\rightarrow 129$	3.90E+11	$\rightarrow 133$	2.64E+11	$\rightarrow 148$	2.49E+11	$\rightarrow 147$	2.05E+11	$\rightarrow 150$	1.98E+12
412	3.09E+11	$\rightarrow 8$	1.98E+11	$\rightarrow 12$	7.09E+10	$\rightarrow 213$	6.04E+10	$\rightarrow 6$	2.87E+10	$\rightarrow 50$	8.25E+11
413	7.77E+11	$\rightarrow 133$	3.71E+11	$\rightarrow 148$	2.81E+11	$\rightarrow 145$	2.57E+11	$\rightarrow 131$	5.57E+10	$\rightarrow 118$	1.92E+12

Table 5. continued.

Index	$A^{r}(s^{-1})$	final	$A^{r}(s^{-1})$	final	A^{r} (s ⁻¹)	final	$A^{r}(s^{-1})$	final	$A^{r}(s^{-1})$	final	$\sum A^r (s^{-1})$
		level		level		level		level		level	
414	8.33E+11	$\rightarrow 150$	4.11E+11	$\rightarrow 139$	1.34E+11	$\rightarrow 149$	9.45E+10	$\rightarrow 147$	8.43E+10	$\rightarrow 137$	1.87E+12
415	1.24E+12	$\rightarrow 145$	2.55E+11	$\rightarrow 152$	1.41E+11	$\rightarrow 131$	1.25E+11	$\rightarrow 138$	5.29E+10	$\rightarrow 126$	1.87E+12
416	6.96E+11	$\rightarrow 149$	5.30E+11	$\rightarrow 137$	2.06E+11	$\rightarrow 154$	1.10E+11	$\rightarrow 148$	8.26E+10	$\rightarrow 145$	1.86E+12
417	2.08E+11	$\rightarrow 12$	7.40E+10	$\rightarrow 213$	6.26E+10	$\rightarrow 7$	4.64E+10	$\rightarrow 52$	4.09E+10	$\rightarrow 241$	4.72E+11
418	1.54E+12	$\rightarrow 7$	2.37E+11	$\rightarrow 112$	1.32E+11	$\rightarrow 6$	1.15E+11	$\rightarrow 12$	4.50E+10	$\rightarrow 213$	2.23E+12
419	1.10E+12	$\rightarrow 139$	3.44E+11	$\rightarrow 150$	1.87E+11	$\rightarrow 137$	7.59E+10	$\rightarrow 149$	3.12E+10	$\rightarrow 129$	1.86E+12
420	9.35E+11	$\rightarrow 137$	6.40E+11	$\rightarrow 149$	1.12E+11	$\rightarrow 142$	6.57E+10	$\rightarrow 152$	5.38E+10	$\rightarrow 118$	1.87E+12
421	1.24E+12	$\rightarrow 142$	4.70E+11	$\rightarrow 152$	7.64E+10	$\rightarrow 145$	6.70E+10	$\rightarrow 116$	4.43E+10	$\rightarrow 131$	1.95E+12
422	1.37E+12	$\rightarrow 154$	1.30E+11	$\rightarrow 149$	1.03E+11	$\rightarrow 137$	6.28E+10	$\rightarrow 175$	5.63E+10	$\rightarrow 178$	1.85E+12
423	4.70E+11	$\rightarrow 17$	1.60E+11	$\rightarrow 216$	2.60E+10	$\rightarrow 22$	1.24E+10	$\rightarrow 3$	1.11E+10	$\rightarrow 253$	6.91E+11
424	2.67E+11	$\rightarrow 18$	1.76E+11	$\rightarrow 17$	9.15E+10	$\rightarrow 217$	6.58E+10	$\rightarrow 1$	5.93E+10	$\rightarrow 216$	7.59E+11
425	3.57E+11	$\rightarrow 17$	1.22E+11	$\rightarrow 216$	1.11E+11	$\rightarrow 18$	5.42E+10	$\rightarrow 1$	3.77E+10	$\rightarrow 217$	7.44E+11
426	3.24E+11	$\rightarrow 18$	1.60E+11	$\rightarrow 19$	1.11E+11	$\rightarrow 217$	5.52E+10	$\rightarrow 218$	1.23E+10	$\rightarrow 1$	7.03E+11
427	4.92E+11	$\rightarrow 19$	1.69E+11	$\rightarrow 218$	8.82E+09	$\rightarrow 254$	4.47E+09	$\rightarrow 69$	2.53E+09	$\rightarrow 142$	6.82E+11
428	1.28E+12	$\rightarrow 3$	9.17E+11	$\rightarrow 1$	3.18E+11	$\rightarrow 22$	1.19E+11	$\rightarrow 219$	9.90E+10	$\rightarrow 23$	2.88E+12
429	1.78E+12	$\rightarrow 2$	8.85E+11	$\rightarrow 3$	2.24E+11	$\rightarrow 24$	1.64E+11	$\rightarrow 22$	1.09E+11	$\rightarrow 1$	3.46E+12
430	3.39E+12	$\rightarrow 1$	3.88E+11	$\rightarrow 23$	1.53E+11	$\rightarrow 220$	7.28E+10	$\rightarrow 37$	4.63E+10	$\rightarrow 4$	4.11E+12
431	2.69E+11	$\rightarrow 99$	1.24E+11	$\rightarrow 100$	1.21E+11	$\rightarrow 3$	1.20E+11	$\rightarrow 1$	1.14E+11	$\rightarrow 4$	9.46E+11
432	5.06E+11	$\rightarrow 4$	1.34E+11	$\rightarrow 3$	1.28E+11	$\rightarrow 99$	9.10E+10	$\rightarrow 100$	9.05E+10	$\rightarrow 1$	1.31E+12
433	2.14E+11	$\rightarrow 4$	1.44E+11	$\rightarrow 1$	9.82E+10	$\rightarrow 99$	7.55E+10	$\rightarrow 244$	7.33E+10	$\rightarrow 100$	9.06E+11
434	3.64E+11	$\rightarrow 100$	1.29E+11	$\rightarrow 1$	1.16E+11	$\rightarrow 4$	6.54E+10	$\rightarrow 164$	4.07E+10	$\rightarrow 101$	8.18E+11
435	4.98E+11	$\rightarrow 41$	2.26E+11	$\rightarrow 232$	2.08E+11	$\rightarrow 40$	9.67E+10	$\rightarrow 235$	9.53E+09	$\rightarrow 46$	1.07E+12
436	6.10E+11	$\rightarrow 40$	2.81E+11	$\rightarrow 235$	1.16E+11	$\rightarrow 46$	5.42E+10	$\rightarrow 237$	1.78E+09	$\rightarrow 242$	1.07E+12
437	4.04E+11	$\rightarrow 44$	2.86E+11	$\rightarrow 41$	1.88E+11	$\rightarrow 236$	1.32E+11	$\rightarrow 232$	2.81E+10	$\rightarrow 40$	1.08E+12
438	7.26E+11	$\rightarrow 46$	3.38E+11	$\rightarrow 237$	1.26E+09	$\rightarrow 62$	8.43E+08	$\rightarrow 227$	1.84E+08	$\rightarrow 350$	1.07E+12
439	3.42E+11	$\rightarrow 42$	3.42E+11	$\rightarrow 44$	1.60E+11	$\rightarrow 236$	1.60E+11	$\rightarrow 234$	4.75E+10	$\rightarrow 41$	1.08E+12
440	5.03E+11	$\rightarrow 50$	2.85E+11	$\rightarrow 239$	6.40E+10	$\rightarrow 53$	3.85E+10	$\rightarrow 242$	2.92E+10	$\rightarrow 71$	1.02E+12
441	5.31E+11	$\rightarrow 53$	3.1/E+11	$\rightarrow 242$	/./6E+10	$\rightarrow 68$	2.21E+10	$\rightarrow 5/$	1.08E+10	$\rightarrow 238$	9.90E+11
442	4.88E+11	$\rightarrow 52$	2.78E+11	$\rightarrow 241$	9.53E+10	$\rightarrow 50$	5.42E+10	$\rightarrow 239$	1.68E+10	$\rightarrow 61$	1.01E+12
443	1.90E+12	$\rightarrow 4$	2.50E+11	$\rightarrow 109$	1.39E+11	$\rightarrow 101$	1.05E+11	$\rightarrow 1$	5.21E+10	$\rightarrow 1/2$	2.59E+12
444	3.01E+11	$\rightarrow 256$	2.53E+11	$\rightarrow 251$	1.46E+10	$\rightarrow 254$	1.14E+10	$\rightarrow 126$	5.81E+09	$\rightarrow 259$	5.90E+11
445	5./6E+11	$\rightarrow 254$	1.33E+10	$\rightarrow 122$	5.31E+08	$\rightarrow 46$	6.15E+07	$\rightarrow 237$	2.1/E+0/	$\rightarrow 306$	5.89E+11
446	5.18E+11	$\rightarrow 4$	2.46E+11	$\rightarrow 1$	1.95E+11	$\rightarrow 100$	5.50E+10	$\rightarrow 109$	4.01E+10	$\rightarrow 99$	1.36E+12
447	3.39E+11	$\rightarrow 250$	1.54E+11	$\rightarrow 255$	0.3/E+10	$\rightarrow 251$	2.2/E+10	$\rightarrow 131$	1.14E+10	$\rightarrow 249$	0.21E+11
448	2.08E+11	$\rightarrow 251$	2.05E+11	$\rightarrow 250$	4.01E+10	$\rightarrow 254$	3.14E+10	$\rightarrow 138$	0.20E+09	$\rightarrow 120$	0.20E+11
449	3.90E+11	$\rightarrow 252$	1.09E+11	$\rightarrow 250$	0.90E+10	$\rightarrow 257$	3.03E+10	$\rightarrow 137$	8.95E+09	$\rightarrow 133$	0.34E+11
450	5.94E+11	$\rightarrow 255$	1.10E+11	$\rightarrow 250$	3.91E+10	$\rightarrow 251$	5.52E+10	$\rightarrow 230$	2.10E+10	$\rightarrow 145$	0.32E+11
451	4.48E+11	$\rightarrow 255$	1.24E+11	$\rightarrow 252$	7.24E+10	$\rightarrow 139$	1.31E+10	$\rightarrow 137$	8.28E+09	$\rightarrow 250$	0./9E+11
452	4.33E+11	$\rightarrow 237$	3.32E+10	$\rightarrow 149$	3.32E+10	$\rightarrow 255$	$4.63E \pm 10$ $1.72E \pm 10$	$\rightarrow 232$	1.3/E+10	$\rightarrow 230$	0.90E+11
435	4.06E+11	$\rightarrow 101$	0.00E+10	$\rightarrow 103$	3.20E+10	$\rightarrow 239$	1.73E+10	$\rightarrow 1/2$	9.01E+09	$\rightarrow 1/0$	3.3/E+11 8.05E+11
454	3.44E+11	$\rightarrow 4$	2.21C+11	$\rightarrow 101$	3.30E+10 1 $24E+11$	$\rightarrow 100$	$2.99E \pm 10$	→ 204	1.70E+1U	$\rightarrow 3$ $\sqrt{174}$	0.7JE+11
4JJ 156	9.00E+11	$\rightarrow 4$	1.4/E+11	$\rightarrow 109$	1.20E+11	$\rightarrow 101$	9.44E+10	$\rightarrow 1$	4.90E+10	$\rightarrow 1/0$	1.00E + 12
430 457	3.32E+11 2.10E+12	$\rightarrow 99$	2.03E+11	$\rightarrow 3$	1.39E+10	$\rightarrow 1/9$	4.01E+10	$\rightarrow 247$	1.4/E+10	$\rightarrow 1/3$	7.90E+11
4J/ 150	2.19E+12	$\rightarrow 4$	2.33E+11 2.55E+10	$\rightarrow 109$	1.23E+11	$\rightarrow 1$	7.00E+10	$\rightarrow 101$	+.03E+10	$\rightarrow 207$	2.07E+12
438	1.90E+11	\rightarrow 99	5.55E+10	$\rightarrow 29$	3.1/E+10	→ 24ð	2.29E+10	$\rightarrow 1/3$	1.0/E+10	$\rightarrow 100$	4.J1E+11

V. Jonauskas et al.: Transition rates for Fe xix, Online Material p 27

Table 5. continued.

Index	A^{r} (s ⁻¹)	final	$\sum A^r (s^{-1})$								
		level									
459	6.77E+11	$\rightarrow 4$	9.54E+10	$\rightarrow 100$	7.70E+10	$\rightarrow 109$	6.08E+10	$\rightarrow 101$	2.22E+10	$\rightarrow 99$	1.15E+12
460	2.36E+12	$\rightarrow 4$	2.68E+11	$\rightarrow 109$	8.19E+10	$\rightarrow 100$	4.91E+10	$\rightarrow 180$	3.24E+10	$\rightarrow 1$	2.94E+12
461	2.08E+11	$\rightarrow 6$	1.62E+11	$\rightarrow 155$	1.05E+11	$\rightarrow 7$	8.63E+10	$\rightarrow 153$	8.24E+10	$\rightarrow 223$	1.05E+12
462	8.22E+10	$\rightarrow 3$	6.62E+10	$\rightarrow 33$	4.58E+10	$\rightarrow 39$	3.73E+10	$\rightarrow 258$	3.35E+10	$\rightarrow 109$	4.84E+11
463	1.34E+11	$\rightarrow 4$	1.07E+11	$\rightarrow 1$	7.91E+10	$\rightarrow 101$	7.10E+10	$\rightarrow 34$	4.67E+10	$\rightarrow 259$	6.38E+11
464	1.18E+11	$\rightarrow 7$	9.96E+10	$\rightarrow 6$	9.84E+10	$\rightarrow 14$	7.32E+10	$\rightarrow 13$	5.15E+10	$\rightarrow 155$	6.89E+11
465	1.92E+11	$\rightarrow 14$	6.82E+10	$\rightarrow 222$	3.84E+10	$\rightarrow 13$	3.83E+10	$\rightarrow 271$	3.12E+10	$\rightarrow 59$	4.51E+11
466	2.17E+11	$\rightarrow 13$	7.81E+10	$\rightarrow 223$	4.60E+10	$\rightarrow 272$	2.78E+10	$\rightarrow 60$	1.22E+10	$\rightarrow 6$	4.50E+11
467	4.09E+11	$\rightarrow 9$	3.27E+11	$\rightarrow 156$	1.15E+11	$\rightarrow 7$	9.18E+10	$\rightarrow 222$	4.83E+10	$\rightarrow 14$	1.11E+12
468	1.83E+11	$\rightarrow 13$	1.01E+11	$\rightarrow 7$	6.29E+10	$\rightarrow 223$	3.47E+10	$\rightarrow 14$	2.43E+10	$\rightarrow 275$	5.53E+11
469	1.14E+11	$\rightarrow 14$	8.60E+10	$\rightarrow 8$	5.64E+10	$\rightarrow 13$	3.95E+10	$\rightarrow 6$	3.27E+10	$\rightarrow 7$	5.67E+11
470	2.68E+11	$\rightarrow 9$	1.54E+11	$\rightarrow 14$	8.16E+10	$\rightarrow 156$	2.49E+10	$\rightarrow 277$	2.29E+10	$\rightarrow 222$	6.72E+11
471	1.33E+11	$\rightarrow 15$	9.63E+10	$\rightarrow 16$	4.31E+10	$\rightarrow 226$	3.91E+10	$\rightarrow 6$	3.54E+10	$\rightarrow 228$	5.01E+11
472	2.63E+11	$\rightarrow 9$	1.49E+11	$\rightarrow 228$	1.30E+11	$\rightarrow 16$	9.63E+10	$\rightarrow 7$	5.64E+10	$\rightarrow 158$	1.00E+12
473	2.35E+11	$\rightarrow 6$	1.54E+11	$\rightarrow 15$	1.40E+11	$\rightarrow 226$	5.48E+10	$\rightarrow 159$	3.38E+10	$\rightarrow 7$	8.37E+11
474	2.25E+11	$\rightarrow 15$	7.58E+10	$\rightarrow 226$	4.41E+10	$\rightarrow 280$	3.12E+10	$\rightarrow 63$	1.89E+10	$\rightarrow 134$	4.49E+11
475	1.26E+11	$\rightarrow 16$	8.96E+10	$\rightarrow 15$	5.70E+10	$\rightarrow 6$	4.43E+10	$\rightarrow 228$	2.75E+10	$\rightarrow 226$	5.08E+11
476	8.02E+11	$\rightarrow 121$	4.81E+10	$\rightarrow 130$	3.62E+10	$\rightarrow 124$	1.40E+10	$\rightarrow 271$	8.53E+09	$\rightarrow 6$	9.51E+11
477	6.35E+11	$\rightarrow 124$	2.55E+11	$\rightarrow 128$	1.61E+10	$\rightarrow 272$	1.55E+10	$\rightarrow 127$	7.95E+09	$\rightarrow 134$	9.54E+11
478	1.71E+11	$\rightarrow 16$	1.14E+11	$\rightarrow 7$	6.81E+10	$\rightarrow 228$	4.26E+10	$\rightarrow 9$	3.04E+10	$\rightarrow 159$	6.53E+11
479	3.01E+11	$\rightarrow 132$	2.53E+11	$\rightarrow 121$	2.20E+11	$\rightarrow 123$	2.20E+11	$\rightarrow 7$	3.14E+10	$\rightarrow 6$	1.14E+12
480	9.34E+11	$\rightarrow 127$	1.85E+10	$\rightarrow 280$	4.03E+09	$\rightarrow 323$	2.05E+09	$\rightarrow 63$	9.38E+08	$\rightarrow 453$	9.64E+11
481	4.91E+12	$\rightarrow 7$	6.99E+11	$\rightarrow 9$	5.17E+11	$\rightarrow 123$	2.45E+11	$\rightarrow 140$	4.74E+10	$\rightarrow 156$	6.59E+12
482	2.59E+12	$\rightarrow 7$	1.08E+12	$\rightarrow 9$	2.84E+11	$\rightarrow 123$	2.73E+11	$\rightarrow 6$	1.03E+11	$\rightarrow 140$	4.83E+12
483	1.65E+11	$\rightarrow 7$	1.28E+11	$\rightarrow 159$	5.74E+10	$\rightarrow 157$	5.40E+10	$\rightarrow 9$	5.37E+10	$\rightarrow 15$	7.12E+11
484	4.03E+11	$\rightarrow 1$	3.62E+11	$\rightarrow 3$	2.12E+11	$\rightarrow 27$	1.62E+11	$\rightarrow 28$	7.77E+10	$\rightarrow 240$	1.50E+12
485	5.10E+11	$\rightarrow 6$	4.76E+11	$\rightarrow 130$	1.84E+11	$\rightarrow 124$	9.87E+10	$\rightarrow 141$	5.53E+10	$\rightarrow 128$	1.41E+12
486	2.50E+12	$\rightarrow 8$	1.96E+11	$\rightarrow 9$	1.72E+11	$\rightarrow 123$	1.50E+11	$\rightarrow 143$	9.37E+10	$\rightarrow 132$	3.54E+12
487	3.46E+11	$\rightarrow 29$	1.46E+11	$\rightarrow 28$	1.32E+11	$\rightarrow 4$	1.16E+11	$\rightarrow 243$	5.13E+10	$\rightarrow 245$	8.17E+11
488	4.01E+11	$\rightarrow 2$	2.98E+11	$\rightarrow 27$	2.52E+11	$\rightarrow 1$	1.29E+11	$\rightarrow 4$	9.96E+10	$\rightarrow 240$	1.53E+12
489	2.76E+11	$\rightarrow 30$	2.19E+11	$\rightarrow 32$	1.68E+11	$\rightarrow 244$	1.03E+10	$\rightarrow 296$	1.44E+09	$\rightarrow 48$	6.81E+11
490	5.84E+11	$\rightarrow 3$	3.37E+11	$\rightarrow 27$	1.26E+11	$\rightarrow 240$	6.55E+10	$\rightarrow 36$	6.29E+10	$\rightarrow 31$	1.29E+12
491	3.10E+12	$\rightarrow 7$	4.27E+11	$\rightarrow 6$	2.84E+11	$\rightarrow 130$	1.89E+11	$\rightarrow 140$	1.21E+11	$\rightarrow 132$	4.54E+12
492	2.28E+12	$\rightarrow 8$	1.68E+12	$\rightarrow 7$	4.45E+11	$\rightarrow 9$	2.56E+11	$\rightarrow 6$	2.13E+11	$\rightarrow 143$	5.49E+12
493	1.26E+12	$\rightarrow 1$	2.57E+11	$\rightarrow 4$	1.69E+11	$\rightarrow 28$	1.17E+11	$\rightarrow 30$	7.68E+10	$\rightarrow 29$	2.20E+12
494	5.29E+11	$\rightarrow 128$	1.79E+11	$\rightarrow 124$	1.64E+11	$\rightarrow 127$	1.77E+10	$\rightarrow 134$	1.07E+10	$\rightarrow 281$	9.29E+11
495	1.77E+12	$\rightarrow 3$	5.82E+11	$\rightarrow 1$	3.19E+11	$\rightarrow 4$	1.39E+11	$\rightarrow 29$	1.38E+11	$\rightarrow 36$	3.35E+12
496	6.07E+12	$\rightarrow 6$	3.56E+11	$\rightarrow 141$	2.95E+11	$\rightarrow 8$	2.33E+11	$\rightarrow 130$	1.28E+11	$\rightarrow 135$	7.45E+12
497	1.45E+12	$\rightarrow 3$	8.07E+11	$\rightarrow 2$	1.92E+11	$\rightarrow 4$	1.45E+11	$\rightarrow 35$	1.21E+11	$\rightarrow 1$	3.37E+12
498	4.78E+12	$\rightarrow 6$	2.45E+11	$\rightarrow 141$	2.17E+11	$\rightarrow 134$	1.35E+11	$\rightarrow 135$	1.13E+11	$\rightarrow 130$	5.79E+12
499	2.61E+12	$\rightarrow 6$	4.05E+11	$\rightarrow 134$	1.40E+11	$\rightarrow 141$	7.13E+10	$\rightarrow 124$	6.90E+10	$\rightarrow 127$	3.52E+12
500	6.29E+11	$\rightarrow 134$	1.40E+11	$\rightarrow 127$	8.72E+10	$\rightarrow 128$	2.53E+10	$\rightarrow 124$	7.58E+09	$\rightarrow 281$	9.18E+11
501	6.95E+11	$\rightarrow 3$	2.05E+11	$\rightarrow 113$	8.65E+10	$\rightarrow 43$	7.48E+10	$\rightarrow 278$	5.14E+10	$\rightarrow 185$	1.27E+12
502	5.70E+11	$\rightarrow 163$	2.66E+11	$\rightarrow 291$	1.49E+10	$\rightarrow 164$	1.41E+10	$\rightarrow 182$	8.45E+09	$\rightarrow 293$	9.02E+11
503	3.80E+11	$\rightarrow 164$	2.84E+11	$\rightarrow 293$	1.42E+11	$\rightarrow 172$	5.21E+10	$\rightarrow 176$	7.28E+09	$\rightarrow 296$	8.72E+11
504	3.17E+11	$\rightarrow 166$	2.76E+11	$\rightarrow 294$	5.54E+10	$\rightarrow 163$	3.72E+10	$\rightarrow 291$	1.60E+10	$\rightarrow 182$	7.75E+11

Table 5. continued.

Index	A^{r} (s ⁻¹)	final	$\sum A^r (s^{-1})$								
		level	. ,	level		level		level		level	_ ` `
505	4.48E+11	$\rightarrow 135$	1.50E+11	$\rightarrow 128$	8.64E+10	$\rightarrow 141$	6.46E+10	$\rightarrow 134$	4.91E+10	$\rightarrow 124$	9.45E+11
506	2.94E+11	$\rightarrow 297$	2.40E+11	$\rightarrow 170$	8.95E+10	$\rightarrow 182$	3.64E+10	$\rightarrow 164$	3.58E+10	$\rightarrow 293$	7.59E+11
507	4.42E+11	$\rightarrow 1$	1.54E+11	$\rightarrow 113$	7.69E+10	$\rightarrow 284$	4.85E+10	$\rightarrow 4$	4.76E+10	$\rightarrow 45$	1.09E+12
508	3.36E+12	$\rightarrow 9$	6.76E+11	$\rightarrow 7$	2.30E+11	$\rightarrow 6$	2.27E+11	$\rightarrow 140$	2.00E+11	$\rightarrow 132$	5.27E+12
509	2.77E+11	$\rightarrow 299$	8.88E+10	$\rightarrow 173$	8.17E+10	$\rightarrow 166$	7.75E+10	$\rightarrow 179$	5.54E+10	$\rightarrow 294$	7.51E+11
510	3.11E+11	$\rightarrow 300$	1.68E+11	$\rightarrow 175$	5.50E+10	$\rightarrow 170$	5.39E+10	$\rightarrow 297$	3.20E+10	$\rightarrow 178$	7.43E+11
511	1.53E+12	$\rightarrow 9$	3.18E+11	$\rightarrow 135$	2.45E+11	$\rightarrow 7$	1.83E+11	$\rightarrow 6$	1.08E+11	$\rightarrow 132$	2.86E+12
512	3.88E+11	$\rightarrow 56$	2.44E+11	$\rightarrow 270$	6.38E+10	$\rightarrow 50$	5.24E+10	$\rightarrow 59$	4.42E+10	$\rightarrow 71$	1.10E+12
513	3.83E+11	$\rightarrow 61$	1.98E+11	$\rightarrow 273$	1.71E+11	$\rightarrow 9$	1.49E+11	$\rightarrow 56$	1.13E+11	$\rightarrow 6$	1.42E+12
514	6.33E+11	$\rightarrow 59$	2.89E+11	$\rightarrow 271$	3.62E+10	$\rightarrow 275$	3.31E+10	$\rightarrow 68$	9.66E+09	$\rightarrow 57$	1.02E+12
515	2.97E+11	$\rightarrow 57$	2.06E+11	$\rightarrow 275$	9.42E+10	$\rightarrow 60$	8.68E+10	$\rightarrow 76$	7.37E+10	$\rightarrow 53$	1.06E+12
516	5.79E+11	$\rightarrow 60$	3.30E+11	$\rightarrow 272$	1.04E+11	$\rightarrow 62$	4.55E+09	$\rightarrow 64$	1.50E+09	$\rightarrow 279$	1.02E+12
517	6.72E+12	$\rightarrow 9$	1.10E+12	$\rightarrow 7$	4.00E+11	$\rightarrow 140$	1.86E+11	$\rightarrow 132$	1.52E+11	$\rightarrow 123$	8.76E+12
518	1.85E+11	$\rightarrow 34$	1.72E+11	$\rightarrow 32$	1.21E+11	$\rightarrow 30$	8.91E+10	$\rightarrow 249$	5.96E+10	$\rightarrow 259$	6.80E+11
519	4.18E+11	$\rightarrow 65$	2.49E+11	$\rightarrow 276$	1.84E+11	$\rightarrow 6$	6.99E+10	$\rightarrow 57$	4.84E+10	$\rightarrow 275$	1.26E+12
520	2.48E+11	$\rightarrow 58$	2.36E+11	$\rightarrow 61$	2.24E+11	$\rightarrow 8$	1.46E+11	$\rightarrow 274$	8.88E+10	$\rightarrow 273$	1.35E+12
521	4.45E+11	$\rightarrow 33$	1.37E+11	$\rightarrow 258$	2.86E+10	$\rightarrow 249$	2.38E+10	$\rightarrow 30$	2.09E+10	$\rightarrow 32$	6.83E+11
522	4.95E+11	$\rightarrow 34$	1.68E+11	$\rightarrow 259$	9.52E+09	$\rightarrow 304$	1.68E+09	$\rightarrow 256$	1.24E+09	$\rightarrow 306$	6.79E+11
523	2.93E+11	$\rightarrow 67$	2.46E+11	$\rightarrow 277$	1.73E+11	$\rightarrow 72$	1.40E+11	$\rightarrow 65$	1.39E+11	$\rightarrow 7$	1.35E+12
524	5.41E+11	$\rightarrow 295$	9.94E+09	$\rightarrow 296$	1.21E+09	$\rightarrow 305$	1.16E+09	$\rightarrow 176$	9.76E+08	$\rightarrow 172$	5.58E+11
525	5.52E+11	$\rightarrow 296$	3.49E+09	$\rightarrow 165$	1.23E+09	$\rightarrow 306$	4.65E+08	$\rightarrow 60$	1.30E+08	$\rightarrow 122$	5.58E+11
526	1.35E+12	$\rightarrow 1$	1.69E+11	$\rightarrow 32$	1.08E+11	$\rightarrow 37$	1.04E+11	$\rightarrow 30$	7.73E+10	$\rightarrow 249$	2.04E+12
527	1.08E+12	$\rightarrow 3$	1.97E+11	$\rightarrow 31$	1.54E+11	$\rightarrow 36$	1.39E+11	$\rightarrow 262$	5.95E+10	$\rightarrow 38$	1.77E+12
528	8.64E+11	$\rightarrow 5$	3.97E+11	$\rightarrow 2$	2.72E+11	$\rightarrow 3$	2.20E+11	$\rightarrow 4$	1.74E+11	$\rightarrow 114$	2.50E+12
529	2.53E+12	$\rightarrow 1$	2.13E+11	$\rightarrow 37$	1.06E+11	$\rightarrow 264$	8.21E+10	$\rightarrow 32$	5.95E+10	$\rightarrow 30$	3.28E+12
530	7.74E+11	$\rightarrow 3$	5.51E+11	$\rightarrow 1$	3.82E+11	$\rightarrow 4$	1.47E+11	$\rightarrow 31$	8.84E+10	$\rightarrow 36$	2.48E+12
531	5.63E+11	$\rightarrow 4$	2.19E+11	$\rightarrow 113$	1.38E+11	$\rightarrow 169$	8.70E+10	$\rightarrow 179$	5.72E+10	$\rightarrow 187$	1.44E+12
532	2.46E+12	$\rightarrow 1$	6.91E+11	$\rightarrow 4$	2.48E+11	$\rightarrow 37$	1.68E+11	$\rightarrow 3$	1.16E+11	$\rightarrow 5$	4.22E+12
533	7.56E+11	$\rightarrow 174$	6.68E+11	$\rightarrow 169$	1.25E+11	$\rightarrow 173$	5.28E+10	$\rightarrow 146$	5.07E+10	$\rightarrow 5$	2.09E+12
534	4.89E+11	$\rightarrow 169$	4.72E+11	$\rightarrow 179$	2.49E+11	$\rightarrow 175$	1.17E+11	$\rightarrow 113$	9.75E+10	$\rightarrow 178$	1.78E+12
535	2.44E+12	$\rightarrow 4$	4.98E+11	$\rightarrow 3$	1.54E+11	$\rightarrow 39$	7.57E+10	$\rightarrow 31$	7.26E+10	$\rightarrow 267$	3.70E+12
536	1.56E+11	$\rightarrow 113$	6.17E+10	$\rightarrow 38$	6.05E+10	$\rightarrow 283$	5.30E+10	$\rightarrow 43$	4.18E+10	$\rightarrow 185$	4.87E+11
537	3.29E+12	$\rightarrow 4$	2.26E+11	$\rightarrow 39$	1.49E+11	$\rightarrow 33$	1.02E+11	$\rightarrow 267$	7.16E+10	$\rightarrow 55$	4.04E+12
538	6.51E+11	$\rightarrow 164$	3.21E+11	$\rightarrow 172$	2.06E+11	$\rightarrow 176$	9.86E+10	$\rightarrow 305$	5.90E+10	$\rightarrow 165$	1.37E+12
539	1.27E+12	$\rightarrow 165$	1.15E+11	$\rightarrow 306$	3.50E+09	$\rightarrow 303$	2.53E+09	$\rightarrow 337$	3.50E+08	$\rightarrow 296$	1.39E+12
540	6.52E+11	$\rightarrow 163$	1.18E+11	$\rightarrow 182$	1.14E+11	$\rightarrow 164$	1.08E+11	$\rightarrow 170$	9.41E+10	$\rightarrow 291$	1.30E+12
541	7.86E+11	$\rightarrow 176$	1.18E+11	$\rightarrow 310$	1.12E+11	$\rightarrow 164$	1.02E+11	$\rightarrow 165$	5.43E+10	$\rightarrow 293$	1.22E+12
542	5.33E+11	$\rightarrow 5$	1.50E+11	$\rightarrow 2$	1.45E+11	$\rightarrow 114$	8.66E+10	$\rightarrow 113$	3.96E+10	$\rightarrow 189$	1.28E+12
543	2.18E+11	$\rightarrow 181$	1.33E+11	$\rightarrow 170$	1.20E+11	$\rightarrow 177$	9.55E+10	$\rightarrow 166$	8.41E+10	$\rightarrow 309$	1.12E+12
544	4.42E+11	$\rightarrow 177$	1.41E+11	$\rightarrow 176$	1.22E+11	$\rightarrow 172$	1.17E+11	$\rightarrow 313$	7.08E+10	$\rightarrow 163$	1.12E+12
545	4.51E+11	$\rightarrow 178$	2.97E+11	$\rightarrow 177$	8.36E+10	$\rightarrow 315$	6.94E+10	$\rightarrow 175$	6.44E+10	$\rightarrow 154$	1.33E+12
546	1.89E+11	$\rightarrow 178$	1.70E+11	$\rightarrow 181$	1.18E+11	$\rightarrow 180$	9.87E+10	$\rightarrow 175$	8.61E+10	$\rightarrow 177$	1.22E+12
547	3.54E+11	$\rightarrow 179$	2.76E+11	$\rightarrow 166$	2.26E+11	$\rightarrow 169$	1.67E+11	$\rightarrow 173$	1.60E+11	$\rightarrow 178$	1.69E+12
548	3.33E+11	$\rightarrow 173$	1.83E+11	$\rightarrow 179$	1.76E+11	$\rightarrow 178$	1.39E+11	$\rightarrow 180$	7.20E+10	$\rightarrow 175$	1.43E+12
549	1.04E+12	$\rightarrow 173$	4.61E+11	$\rightarrow 179$	3.05E+11	$\rightarrow 169$	9.05E+10	$\rightarrow 180$	7.53E+10	$\rightarrow 147$	2.07E+12
550	5.12E+11	$\rightarrow 163$	3.14E+11	$\rightarrow 182$	1.74E+11	$\rightarrow 170$	1.36E+11	$\rightarrow 291$	4.54E+10	$\rightarrow 295$	1.38E+12

V. Jonauskas et al.: Transition rates for Fe xix, Online Material p 29

Table 5. continued.

Index	A^{r} (s ⁻¹)	final	$\sum A^r (s^{-1})$								
		level									
551	6.81E+11	$\rightarrow 172$	5.10E+11	$\rightarrow 164$	1.76E+11	$\rightarrow 293$	5.92E+10	$\rightarrow 296$	3.37E+10	$\rightarrow 165$	1.52E+12
552	3.05E+11	$\rightarrow 173$	2.25E+11	$\rightarrow 180$	1.87E+11	$\rightarrow 181$	1.23E+11	$\rightarrow 178$	8.79E+10	$\rightarrow 166$	1.40E+12
553	7.52E+11	$\rightarrow 175$	1.75E+11	$\rightarrow 181$	1.67E+11	$\rightarrow 170$	1.32E+11	$\rightarrow 300$	1.31E+11	$\rightarrow 182$	1.65E+12
554	5.58E+11	$\rightarrow 183$	3.50E+11	$\rightarrow 173$	3.38E+11	$\rightarrow 180$	1.88E+11	$\rightarrow 178$	1.42E+11	$\rightarrow 169$	1.94E+12
555	9.88E+11	$\rightarrow 166$	1.87E+11	$\rightarrow 294$	1.67E+11	$\rightarrow 163$	1.05E+11	$\rightarrow 182$	8.47E+10	$\rightarrow 181$	1.76E+12
556	7.93E+11	$\rightarrow 170$	3.74E+11	$\rightarrow 182$	1.97E+11	$\rightarrow 297$	1.21E+11	$\rightarrow 164$	9.75E+10	$\rightarrow 172$	1.76E+12
557	6.27E+11	$\rightarrow 64$	2.75E+11	$\rightarrow 281$	4.57E+10	$\rightarrow 279$	2.24E+10	$\rightarrow 63$	1.85E+10	$\rightarrow 62$	1.02E+12
558	6.85E+11	$\rightarrow 63$	3.32E+11	$\rightarrow 280$	6.69E+07	$\rightarrow 259$	5.96E+07	$\rightarrow 522$	5.14E+07	$\rightarrow 34$	1.02E+12
559	2.21E+11	$\rightarrow 70$	1.41E+11	$\rightarrow 74$	1.30E+11	$\rightarrow 285$	9.88E+10	$\rightarrow 72$	9.20E+10	$\rightarrow 58$	1.13E+12
560	1.95E+11	$\rightarrow 57$	1.35E+11	$\rightarrow 282$	1.19E+11	$\rightarrow 62$	1.17E+11	$\rightarrow 68$	1.17E+11	$\rightarrow 76$	1.06E+12
561	5.43E+11	$\rightarrow 74$	2.43E+11	$\rightarrow 290$	1.17E+11	$\rightarrow 72$	7.43E+10	$\rightarrow 9$	4.62E+10	$\rightarrow 287$	1.13E+12
562	4.61E+11	$\rightarrow 62$	2.21E+11	$\rightarrow 279$	1.26E+11	$\rightarrow 63$	6.63E+10	$\rightarrow 280$	6.43E+10	$\rightarrow 60$	1.07E+12
563	2.69E+11	$\rightarrow 74$	1.51E+11	$\rightarrow 71$	1.37E+11	$\rightarrow 72$	1.21E+11	$\rightarrow 290$	8.33E+10	$\rightarrow 287$	1.17E+12
564	2.64E+11	$\rightarrow 71$	1.79E+11	$\rightarrow 286$	1.23E+11	$\rightarrow 74$	9.55E+10	$\rightarrow 73$	7.43E+10	$\rightarrow 68$	1.15E+12
565	2.26E+11	$\rightarrow 71$	1.45E+11	$\rightarrow 68$	1.41E+11	$\rightarrow 286$	1.38E+11	$\rightarrow 57$	1.30E+11	$\rightarrow 282$	1.10E+12
566	1.71E+11	$\rightarrow 72$	1.47E+11	$\rightarrow 287$	1.26E+11	$\rightarrow 67$	1.17E+11	$\rightarrow 73$	1.12E+11	$\rightarrow 292$	1.14E+12
567	2.53E+11	$\rightarrow 73$	2.04E+11	$\rightarrow 292$	1.16E+11	$\rightarrow 76$	8.87E+10	$\rightarrow 68$	7.86E+10	$\rightarrow 298$	1.07E+12
568	2.42E+11	$\rightarrow 76$	1.88E+11	$\rightarrow 298$	1.72E+11	$\rightarrow 68$	1.00E+11	$\rightarrow 62$	6.01E+10	$\rightarrow 282$	1.04E+12
569	5.32E+11	$\rightarrow 303$	1.55E+10	$\rightarrow 306$	7.40E+09	$\rightarrow 304$	5.23E+08	$\rightarrow 64$	5.39E+07	$\rightarrow 281$	5.56E+11
570	5.55E+11	$\rightarrow 304$	5.52E+08	$\rightarrow 63$	6.10E+07	$\rightarrow 280$	3.40E+05	$\rightarrow 34$	8.51E+04	$\rightarrow 558$	5.55E+11
571	2.85E+11	$\rightarrow 180$	2.13E+11	$\rightarrow 183$	1.61E+11	$\rightarrow 314$	8.19E+10	$\rightarrow 173$	8.09E+10	$\rightarrow 179$	1.29E+12
572	3.21E+11	$\rightarrow 178$	2.45E+11	$\rightarrow 316$	1.22E+11	$\rightarrow 173$	9.76E+10	$\rightarrow 177$	7.07E+10	$\rightarrow 175$	1.25E+12
573	4.11E+11	$\rightarrow 177$	3.24E+11	$\rightarrow 178$	1.25E+11	$\rightarrow 315$	9.65E+10	$\rightarrow 175$	7.55E+10	$\rightarrow 311$	1.41E+12
574	4.06E+11	$\rightarrow 180$	3.29E+11	$\rightarrow 181$	1.70E+11	$\rightarrow 312$	7.34E+10	$\rightarrow 309$	5.44E+10	$\rightarrow 175$	1.43E+12
575	2.57E+11	$\rightarrow 305$	2.36E+11	$\rightarrow 176$	2.12E+11	$\rightarrow 164$	2.02E+11	$\rightarrow 172$	1.06E+11	$\rightarrow 310$	1.14E+12
576	6.52E+11	$\rightarrow 165$	3.77E+11	$\rightarrow 306$	9.14E+10	$\rightarrow 304$	4.56E+09	$\rightarrow 303$	2.47E+09	$\rightarrow 296$	1.13E+12
577	5.41E+11	$\rightarrow 177$	2.01E+11	$\rightarrow 172$	1.39E+11	$\rightarrow 176$	1.25E+11	$\rightarrow 313$	1.07E+11	$\rightarrow 308$	1.44E+12
578	5.41E+11	$\rightarrow 181$	2.20E+11	$\rightarrow 182$	1.44E+11	$\rightarrow 309$	1.06E+11	$\rightarrow 170$	9.70E+10	$\rightarrow 308$	1.46E+12
579	2.91E+11	$\rightarrow 1$	2.65E+11	$\rightarrow 4$	2.64E+11	$\rightarrow 117$	4.58E+10	$\rightarrow 249$	3.57E+10	$\rightarrow 302$	1.18E+12
580	5.86E+11	$\rightarrow 182$	1.76E+11	$\rightarrow 170$	1.38E+11	$\rightarrow 313$	1.35E+11	$\rightarrow 308$	1.02E+11	$\rightarrow 176$	1.42E+12
581	4.97E+11	$\rightarrow 176$	3.15E+11	$\rightarrow 172$	2.19E+11	$\rightarrow 310$	1.82E+11	$\rightarrow 165$	1.02E+11	$\rightarrow 306$	1.40E+12
582	1.09E+11	$\rightarrow 21$	1.08E+11	$\rightarrow 9$	7.81E+10	$\rightarrow 168$	5.67E+10	$\rightarrow 261$	4.47E+10	$\rightarrow 20$	6.86E+11
583	1.52E+11	$\rightarrow 168$	1.22E+11	$\rightarrow 9$	7.93E+10	$\rightarrow 20$	6.91E+10	$\rightarrow 184$	5.80E+10	$\rightarrow 268$	7.26E+11
584	2.32E+11	$\rightarrow 171$	8.97E+10	$\rightarrow 21$	6.92E+10	$\rightarrow 261$	5.60E+10	$\rightarrow 162$	5.33E+10	$\rightarrow 269$	6.10E+11
585	3.05E+11	$\rightarrow 5$	1.20E+11	$\rightarrow 117$	1.07E+11	$\rightarrow 1$	5.03E+10	$\rightarrow 54$	3.71E+10	$\rightarrow 311$	9.67E+11
586	4.60E+11	$\rightarrow 3$	2.70E+11	$\rightarrow 119$	6.14E+10	$\rightarrow 191$	3.66E+10	$\rightarrow 302$	3.51E+10	$\rightarrow 4$	1.10E+12
587	2.24E+11	$\rightarrow 21$	7.50E+10	$\rightarrow 261$	4.88E+10	$\rightarrow 321$	3.27E+10	$\rightarrow 78$	3.05E+10	$\rightarrow 9$	4.75E+11
588	1.01E+11	$\rightarrow 20$	9.41E+10	$\rightarrow 21$	3.87E+10	$\rightarrow 320$	3.02E+10	$\rightarrow 8$	2.69E+10	$\rightarrow 260$	4.71E+11
589	5.87E+11	$\rightarrow 1$	3.86E+11	$\rightarrow 117$	3.05E+11	$\rightarrow 4$	7.95E+10	$\rightarrow 192$	7.77E+10	$\rightarrow 259$	1.54E+12
590	2.46E+11	$\rightarrow 4$	2.43E+11	$\rightarrow 117$	1.75E+11	$\rightarrow 1$	1.13E+11	$\rightarrow 5$	3.42E+10	$\rightarrow 264$	1.09E+12
591	1.66E+11	$\rightarrow 171$	1.33E+11	$\rightarrow 21$	3.36E+10	$\rightarrow 162$	2.96E+10	$\rightarrow 7$	2.83E+10	$\rightarrow 322$	4.90E+11
592	1.17E+11	$\rightarrow 119$	1.08E+11	$\rightarrow 117$	1.04E+11	$\rightarrow 1$	3.89E+10	$\rightarrow 48$	3.66E+10	$\rightarrow 258$	6.38E+11
593	3.73E+11	$\rightarrow 119$	2.22E+11	$\rightarrow 3$	8.58E+10	$\rightarrow 195$	4.47E+10	$\rightarrow 247$	3.87E+10	$\rightarrow 262$	8.59E+11
594	4.27E+11	$\rightarrow 3$	3.34E+11	$\rightarrow 119$	7.51E+10	$\rightarrow 196$	6.94E+10	$\rightarrow 267$	4.61E+10	$\rightarrow 4$	1.15E+12
595	3.70E+11	$\rightarrow 38$	1.85E+11	$\rightarrow 4$	1.34E+11	$\rightarrow 278$	5.56E+10	$\rightarrow 45$	3.61E+10	$\rightarrow 31$	8.88E+11

Table 5. continued.

Index	$A^{r}(s^{-1})$	final	$A^{r}(s^{-1})$	final	A^{r} (s ⁻¹)	final	$A^{r}(s^{-1})$	final	$A^{r}(s^{-1})$	final	$\sum A^r (s^{-1})$
		level		level		level		level		level	
596	3.37E+11	$\rightarrow 6$	2.08E+11	$\rightarrow 155$	1.72E+11	$\rightarrow 25$	5.40E+10	$\rightarrow 268$	3.91E+10	$\rightarrow 323$	9.14E+11
597	2.61E+11	$\rightarrow 7$	1.82E+11	$\rightarrow 153$	1.16E+11	$\rightarrow 26$	7.98E+10	$\rightarrow 6$	6.23E+10	$\rightarrow 155$	9.45E+11
598	1.73E+11	$\rightarrow 151$	1.24E+11	$\rightarrow 153$	1.17E+11	$\rightarrow 7$	1.05E+11	$\rightarrow 8$	8.94E+10	$\rightarrow 25$	9.08E+11
599	1.01E+12	$\rightarrow 3$	3.86E+11	$\rightarrow 43$	1.44E+11	$\rightarrow 283$	1.42E+11	$\rightarrow 4$	3.96E+10	$\rightarrow 45$	1.83E+12
600	8.46E+11	$\rightarrow 4$	4.00E+11	$\rightarrow 45$	1.60E+11	$\rightarrow 284$	7.96E+10	$\rightarrow 1$	4.28E+10	$\rightarrow 39$	1.60E+12
601	1.45E+11	$\rightarrow 7$	1.35E+11	$\rightarrow 151$	1.22E+11	$\rightarrow 25$	8.07E+10	$\rightarrow 8$	8.05E+10	$\rightarrow 153$	8.40E+11
602	9.15E+11	$\rightarrow 6$	4.92E+11	$\rightarrow 155$	1.10E+11	$\rightarrow 157$	5.37E+10	$\rightarrow 25$	3.48E+10	$\rightarrow 80$	1.72E+12
603	6.94E+11	$\rightarrow 7$	4.00E+11	$\rightarrow 153$	1.54E+11	$\rightarrow 6$	1.20E+11	$\rightarrow 9$	1.19E+11	$\rightarrow 155$	1.76E+12
604	1.64E+11	$\rightarrow 151$	1.35E+11	$\rightarrow 26$	1.17E+11	$\rightarrow 9$	1.13E+11	$\rightarrow 153$	9.78E+10	$\rightarrow 7$	9.23E+11
605	2.24E+12	$\rightarrow 2$	2.29E+11	$\rightarrow 49$	2.20E+11	$\rightarrow 5$	1.88E+11	$\rightarrow 3$	1.10E+11	$\rightarrow 38$	3.38E+12
606	1.53E+11	$\rightarrow 25$	5.51E+10	$\rightarrow 26$	5.27E+10	$\rightarrow 268$	3.25E+10	$\rightarrow 331$	2.92E+10	$\rightarrow 87$	4.45E+11
607	7.82E+11	$\rightarrow 156$	5.55E+11	$\rightarrow 9$	1.31E+11	$\rightarrow 7$	4.05E+10	$\rightarrow 6$	2.10E+10	$\rightarrow 155$	1.70E+12
608	3.49E+11	$\rightarrow 329$	1.95E+11	$\rightarrow 189$	9.43E+10	$\rightarrow 186$	1.61E+10	$\rightarrow 330$	1.60E+10	$\rightarrow 187$	7.14E+11
609	3.63E+11	$\rightarrow 330$	3.26E+11	$\rightarrow 187$	6.62E+09	$\rightarrow 328$	3.73E+09	$\rightarrow 293$	3.16E+09	$\rightarrow 296$	7.21E+11
610	2.06E+11	$\rightarrow 26$	6.19E+10	$\rightarrow 269$	5.17E+10	$\rightarrow 92$	3.91E+10	$\rightarrow 334$	1.05E+10	$\rightarrow 9$	3.89E+11
611	4.47E+11	$\rightarrow 77$	2.84E+11	$\rightarrow 318$	1.34E+11	$\rightarrow 73$	2.57E+10	$\rightarrow 78$	2.31E+10	$\rightarrow 56$	1.03E+12
612	5.27E+11	$\rightarrow 78$	2.98E+11	$\rightarrow 321$	6.98E+10	$\rightarrow 89$	5.16E+10	$\rightarrow 76$	2.38E+10	$\rightarrow 159$	1.02E+12
613	5.17E+11	$\rightarrow 327$	3.00E+10	$\rightarrow 191$	1.47E+10	$\rightarrow 328$	3.67E+09	$\rightarrow 163$	2.88E+09	$\rightarrow 330$	5.75E+11
614	3.63E+11	$\rightarrow 81$	2.68E+11	$\rightarrow 322$	9.55E+10	$\rightarrow 7$	8.10E+10	$\rightarrow 9$	6.57E+10	$\rightarrow 86$	1.27E+12
615	5.34E+11	$\rightarrow 328$	2.92E+10	$\rightarrow 192$	2.83E+09	$\rightarrow 172$	2.72E+09	$\rightarrow 164$	1.66E+09	$\rightarrow 293$	5.74E+11
616	4.02E+11	$\rightarrow 80$	3.14E+11	$\rightarrow 320$	1.18E+11	$\rightarrow 6$	1.03E+11	$\rightarrow 77$	7.67E+10	$\rightarrow 155$	1.23E+12
617	1.07E+12	$\rightarrow 3$	3.40E+11	$\rightarrow 136$	9.93E+10	$\rightarrow 199$	8.32E+10	$\rightarrow 301$	7.26E+10	$\rightarrow 307$	1.82E+12
618	2.27E+12	$\rightarrow 5$	3.57E+11	$\rightarrow 144$	2.41E+11	$\rightarrow 2$	8.80E+10	$\rightarrow 198$	3.98E+10	$\rightarrow 10$	3.21E+12
619	5.37E+11	$\rightarrow 3$	3.03E+11	$\rightarrow 136$	7.40E+10	$\rightarrow 197$	6.83E+10	$\rightarrow 317$	5.68E+10	$\rightarrow 302$	1.29E+12
620	7.26E+11	$\rightarrow 6$	2.89E+11	$\rightarrow 159$	2.86E+11	$\rightarrow 157$	2.07E+11	$\rightarrow 158$	7.04E+10	$\rightarrow 279$	1.82E+12
621	1.56E+12	$\rightarrow 3$	1.27E+11	$\rightarrow 5$	1.27E+11	$\rightarrow 47$	1.14E+11	$\rightarrow 301$	9.63E+10	$\rightarrow 136$	2.57E+12
622	4.92E+11	$\rightarrow 48$	1.68E+11	$\rightarrow 302$	1.00E+10	$\rightarrow 337$	4.00E+09	$\rightarrow 30$	3.82E+09	$\rightarrow 33$	6.86E+11
623	9.31E+11	$\rightarrow 7$	6.69E+11	$\rightarrow 6$	3.42E+11	$\rightarrow 157$	2.79E+11	$\rightarrow 160$	8.20E+10	$\rightarrow 9$	2.76E+12
624	1.36E+12	$\rightarrow 185$	2.56E+11	$\rightarrow 186$	1.05E+11	$\rightarrow 193$	4.62E+10	$\rightarrow 195$	4.21E+10	$\rightarrow 180$	1.98E+12
625	1.30E+12	$\rightarrow 3$	1.72E+11	$\rightarrow 51$	1.39E+11	$\rightarrow 4^{\prime}$	7.43E+10	$\rightarrow 301$	6.62E+10	$\rightarrow 36$	1.91E+12
626	5.82E+11	$\rightarrow 158$	2.29E+11	$\rightarrow 15/$	8.15E+10	$\rightarrow 281$	3.34E+10	$\rightarrow 155$	3.08E+10	$\rightarrow 318$	1.09E+12
627	8./3E+11	$\rightarrow 159$	8.5/E+10	$\rightarrow 280$	3.39E+10	$\rightarrow 321$	1.//E+10	$\rightarrow 8/$	1.3/E+10	$\rightarrow 2/9$	1.09E+12
628	1.91E+11	$\rightarrow 4/$	1.24E+11	$\rightarrow 54$	/.01E+10	$\rightarrow 1$	7.00E+10	$\rightarrow 130$	0.34E+10	$\rightarrow 51$	1.00E+11
620	9.96E+11	$\rightarrow 180$	2.30E+11	$\rightarrow 189$	$1.70E \pm 11$	$\rightarrow 190$	1.43E+11 1.15E+11	$\rightarrow 4$	$1.41E \pm 11$ $7.25E \pm 10$	$\rightarrow 10/$	1.96E+12
621	$1.42E \pm 12$	$\rightarrow 4$	1.00E+11	$\rightarrow 34$	1.32E+11	$\rightarrow 55$	1.13E+11 1.60E+11	$\rightarrow 189$	1.23E+10	$\rightarrow 511$	2.30E+12
632	$3.04E \pm 11$	$\rightarrow 4$	2.37E+11 5.26E+11	$\rightarrow 1$	1.00E + 11	$\rightarrow 34$	$1.00E \pm 11$	$\rightarrow 40$	$1.01E \pm 11$ $1.53E \pm 11$	$\rightarrow 33$	1.32E+12 3.52E+12
633	$1.70E \pm 12$	→ / \\ 136	J.20E+11	$\rightarrow 100$	1.15E + 11	\rightarrow	$2.04E \pm 11$ 5.22E ± 10	$\rightarrow 0$	$1.55E \pm 10$	$\rightarrow 3$	$3.32E \pm 12$
634	2.00E+11 0.27E+11	$\rightarrow 130$ $\rightarrow 4$	1.75E+11 6.28E+11	$\rightarrow 4$ $\rightarrow 3$	1.13E+11 1 00E+11	$\rightarrow 5$ $\rightarrow 51$	3.22E+10 1 $34E+11$	$\rightarrow 51$ $\rightarrow 55$	4.06E + 10 0.05E + 10	$\rightarrow 200$ $\rightarrow 1$	$0.90E \pm 11$ $2.31E \pm 12$
635	$9.27E \pm 11$ 1 52E ± 12	\rightarrow 4 \rightarrow 187	$1.01E \pm 11$	$\rightarrow 330$	$2.83E \pm 10$	$\rightarrow 31$ $\rightarrow 328$	$2.00E \pm 10$	$\rightarrow 33$ $\rightarrow 206$	1.05E+10	$\rightarrow 1$ $\rightarrow 188$	$1.83E \pm 12$
636	$1.32E \pm 12$ 1.08E ± 12	$\rightarrow 187$ $\rightarrow 189$	$2.93E \pm 11$	$\rightarrow 330$ $\rightarrow 186$	$1.65E \pm 11$	$\rightarrow 320$ $\rightarrow 320$	4.51E+10	$\rightarrow 290$ $\rightarrow 4$	$4.09E \pm 10$	$\rightarrow 180$ $\rightarrow 187$	$1.83E \pm 12$ 1.84E \pm 12
637	$2.02F \pm 12$	$\rightarrow 7$	$6.87E \pm 11$	$\rightarrow 160$	$6.90F \pm 10$	$\rightarrow 153$	$6.13F \pm 10$	$\rightarrow 290$	$5.13F \pm 10$	$\rightarrow 287$	$3 13F \pm 12$
638	$3.81F \pm 12$	\rightarrow 5	$2.07E \pm 11$	$\rightarrow 66$	$1.40F \pm 11$	\rightarrow 3	$1.30E \pm 11$	$\rightarrow 290$	$1.27E \pm 11$	$\rightarrow 51$	$4.86F \pm 12$
639	2.46F+12	$\rightarrow 9$	2.402 ± 11 9 69F+11	$\rightarrow 8$	3.54F+11	$\rightarrow 161$	2.27F+11	$\rightarrow 162$	5.51F+10	$\rightarrow 6$	$4.50E \pm 12$
640	4.46F+12	$\rightarrow 0$	3.55E+11	$\rightarrow 162$	1.48F+11	$\rightarrow 7$	1.42F+11	$\rightarrow 152$	1.11F+11	$\rightarrow 184$	5.64F+12
040	4.40E+12	\rightarrow 9	3.33E+11	$\rightarrow 102$	1.40E+11	\rightarrow /	1.42C+11	$\rightarrow 138$	1.116+11	\rightarrow 184	J.04E+12

V. Jonauskas et al.: Transition rates for Fe xix, Online Material p 31

Table 5. continued.

Index	A^{r} (s ⁻¹)	final	A^{r} (s ⁻¹)	final	A^{r} (s ⁻¹)	final	$A^{r}(s^{-1})$	final	A^{r} (s ⁻¹)	final	$\sum A^r$ (s ⁻¹)
		level		level		level		level		level	
641	3.40E+11	$\rightarrow 335$	7.43E+10	$\rightarrow 185$	5.90E+10	$\rightarrow 338$	4.29E+10	$\rightarrow 193$	3.13E+10	$\rightarrow 340$	6.72E+11
642	9.20E+11	$\rightarrow 9$	2.78E+11	$\rightarrow 84$	2.27E+11	$\rightarrow 86$	1.37E+11	$\rightarrow 324$	1.34E+11	$\rightarrow 326$	2.21E+12
643	2.32E+11	$\rightarrow 86$	1.68E+11	$\rightarrow 85$	1.55E+11	$\rightarrow 326$	1.01E+11	$\rightarrow 81$	7.54E+10	$\rightarrow 92$	1.09E+12
644	3.54E+11	$\rightarrow 338$	5.86E+10	$\rightarrow 339$	4.21E+10	$\rightarrow 186$	3.91E+10	$\rightarrow 190$	3.69E+10	$\rightarrow 200$	6.69E+11
645	6.87E+11	$\rightarrow 83$	3.35E+11	$\rightarrow 323$	1.43E+10	$\rightarrow 62$	8.45E+09	$\rightarrow 60$	1.33E+09	$\rightarrow 64$	1.05E+12
646	4.40E+11	$\rightarrow 89$	3.09E+11	$\rightarrow 332$	1.22E+11	$\rightarrow 78$	3.61E+10	$\rightarrow 87$	3.44E+10	$\rightarrow 76$	1.02E+12
647	3.61E+11	$\rightarrow 340$	1.18E+11	$\rightarrow 196$	4.19E+10	$\rightarrow 341$	3.15E+10	$\rightarrow 186$	2.66E+10	$\rightarrow 190$	6.95E+11
648	3.71E+11	$\rightarrow 339$	1.54E+11	$\rightarrow 188$	5.05E+10	$\rightarrow 342$	4.39E+10	$\rightarrow 197$	3.00E+10	$\rightarrow 192$	7.04E+11
649	4.57E+11	$\rightarrow 85$	2.22E+11	$\rightarrow 325$	1.51E+11	$\rightarrow 87$	7.08E+10	$\rightarrow 331$	2.75E+10	$\rightarrow 90$	1.08E+12
650	4.26E+11	$\rightarrow 341$	1.69E+11	$\rightarrow 191$	3.05E+10	$\rightarrow 336$	8.08E+09	$\rightarrow 342$	6.44E+09	$\rightarrow 303$	6.65E+11
651	4.38E+11	$\rightarrow 342$	1.69E+11	$\rightarrow 192$	3.02E+10	$\rightarrow 337$	6.17E+09	$\rightarrow 304$	3.90E+09	$\rightarrow 306$	6.61E+11
652	4.07E+11	$\rightarrow 90$	2.34E+11	$\rightarrow 333$	8.70E+10	$\rightarrow 89$	5.83E+10	$\rightarrow 85$	5.54E+10	$\rightarrow 332$	1.06E+12
653	5.64E+11	$\rightarrow 87$	2.93E+11	$\rightarrow 331$	9.11E+10	$\rightarrow 83$	4.92E+10	$\rightarrow 323$	2.16E+10	$\rightarrow 159$	1.07E+12
654	5.52E+11	$\rightarrow 336$	8.92E+09	$\rightarrow 337$	5.45E+09	$\rightarrow 342$	2.63E+09	$\rightarrow 176$	1.77E+09	$\rightarrow 164$	5.74E+11
655	1.80E+12	$\rightarrow 9$	2.85E+11	$\rightarrow 92$	1.87E+11	$\rightarrow 334$	1.12E+11	$\rightarrow 90$	8.94E+10	$\rightarrow 7$	2.96E+12
656	5.67E+11	$\rightarrow 337$	5.43E+09	$\rightarrow 165$	9.97E+08	$\rightarrow 306$	5.38E+08	$\rightarrow 83$	1.60E+08	$\rightarrow 304$	5.74E+11