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Abstract
Relativistic analogues of integrals are applied to the nonrelativistic R-matrix
code to demonstrate the possibilities of the method. An expression for the
relativistic analogue of the multipole integral is obtained. Energy levels and
electron impact excitation cross sections for transitions in C2+, Fe22+ and W70+,
calculated with different codes, are compared. It is found that the relativistic
analogues of integrals method shows good agreement with results calculated
using a relativistic code.

Resonance structure is a prominent feature in the electron excitation collision cross sections for
low and intermediate energies of the incident electron, due to the formation of doubly excited
states during the collision processes. The accuracy of close-coupling calculations, in many
cases, is determined by the number of closely spaced energy levels of the target included to
couple with the incident electron. R-matrix calculations can become time consuming, or even
beyond the capabilities of available computational resources, since the size of (N +1)-electron
Hamiltonian matrix that must be diagonalized in the inner region depends on the number of
channels that are formed from the target levels.

To deal with this problem, close-coupling calculations can be performed in pure LS-
coupling employing nonrelativistic wavefunctions, and later adopting various methods [1–4]
to generate K-matrices (essential in cross-section calculations) for the fine-structure levels.
However, relativistic effects that are important for heavy elements and high-ionization stages
are not included in such calculations.
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Goštauto 12, 01108 Vilnius, Lithuania.

0953-4075/05/050079+07$30.00 © 2005 IOP Publishing Ltd Printed in the UK L79

http://dx.doi.org/10.1088/0953-4075/38/5/L01
http://stacks.iop.org/jb/38/L79


L80 Letter to the Editor

Breit–Pauli calculations are satisfactory for light and medium elements with atomic
numbers Z � 30. One-electron mass–velocity and Darwin terms added to the Hartree–Fock
equations extend the application of the method to heavier elements [5]. The nonrelativistic
approach is more attractive than the relativistic one, because the use of nonrelativistic one-
component wavefunctions requires less computational time compared with relativistic four-
component spinors. At the same time, one nonrelativistic configuration can include many
relativistic configurations that lead to less one- and two-electron matrix elements to be
estimated, due to the dependence of the relativistic radial wavefunction on j . On the other
hand, relativistic wavefunctions obtained solving the Dirac–Fock equations include direct and
indirect relativistic effects. Direct relativistic effects are responsible for the contraction of
inner orbitals, while indirect effects expand valence orbitals [6]. Previously, it was proposed
to adopt a combination of relativistic integrals in place of nonrelativistic integrals, in order to
include relativistic effects in ordinary nonrelativistic codes [7–9], or even perform relativistic
calculations in LS-coupling by the introduction of effective relativistic operators [10–13].

In this letter, we employ the method of relativistic analogues of integrals, which
enables us to extend nonrelativistic close-coupling calculations to a relativistic approach.
In the nonrelativistic approach, the nonrelativistic wavefunctions are obtained by solving
nonrelativistic Hartree–Fock equations. By adopting relativistic analogues of integrals, direct
and indirect relativistic effects are included in the final results. The relativistic analogues of
integrals used here in the nonrelativistic code for one-electron kinetic, mass–velocity, Darwin
operators and spin–orbit constant as well as Coulomb and part of spin-other-orbit interaction,
have been provided by [9]. However, the general formula for multipole integrals essential for
calculations of collision cross sections have not been presented. To demonstrate the abilities
of the method, energy levels and cross sections calculated in the nonrelativistic and relativistic
approximations are compared with results obtained using relativistic analogues of integrals in
the same nonrelativistic code.

Multipole integrals arise from the long-range scattering potential in the excitations by
electrons processes. Therefore, using the general expression [9] for the integral of the Coulomb
interaction:

Rk(n1l1, n2l2, n3l3, n4l4) = 1
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and applying condition rN+1 > rN , the relation for multipole integral is obtained:
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The quantities in braces are 6j coefficients, [j1, j2, . . .] means (2j1 + 1)(2j2 + 1) . . . , and
Mk(n1l1, n2l2) is the nonrelativistic multipole integral:

Mk(n1l1, n2l2) =
∫ ∞

0
drPn1l1(r)r

kPn2l2(r) (3)

and Mk(n1l1j1, n2l2j2) is relativistic multipole integral:

Mk(n1l1j1, n2l2j2) =
∫ ∞

0
dr rk[Pn1l1j1(r)Pn2l2j2(r) + Qn1 l̄1j1

(r)Qn2 l̄2j2
(r)]. (4)

Here Pnl(r) is a radial component of the nonrelativistic one-electron wavefunction; Pnlj (r)

and Qnl̄j (r) are correspondingly the large and small components of a relativistic one-electron
wavefunction. The right-hand side of (2) reduces to a nonrelativistic multipole integral
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Table 1. Energy levels (in Ry) for the 1s22s2, 1s22s12p1 and 1s22p2 configurations of C2+

obtained with the nonrelativistic R-matrix code (ICFT), the relativistic R-matrix code (DARC) and
the nonrelativistic R-matrix code that use the relativistic analogues of integrals (RI).

Index Level ICFT DARC RI

1 2s2 1S0 −72.9791 −72.9882 −72.9882
2 2s12p1 3P0 0.4877 0.4862 0.4863
3 2s12p1 3P1 0.4879 0.4865 0.4866
4 2s12p1 3P2 0.4885 0.4872 0.4871
5 2s12p1 1P1 1.0317 1.0400 1.0400
6 2p2 3P0 1.2714 1.2713 1.2713
7 2p2 3P1 1.2716 1.2716 1.2716
8 2p2 3P2 1.2722 1.2721 1.2721
9 2p2 1D2 1.4233 1.4270 1.4270
10 2p2 1S0 1.7846 1.7979 1.7979

Table 2. Energy levels (in Ry) for the 1s22s2, 1s22s12p1 and 1s22p2 configurations of Fe22+

obtained with the nonrelativistic R-matrix code (ICFT), the relativistic R-matrix code (DARC) and
the nonrelativistic R-matrix code that use the relativistic analogues of integrals (RI).

Index Level ICFT DARC RI

1 2s2 1S0 −1624.9426 −1625.5726 −1625.5709
2 2s12p1 3P0 3.1631 3.1719 3.1915
3 2s12p1 3P1 3.4519 3.4732 3.4879
4 2s12p1 3P2 4.2718 4.3444 4.3346
5 2s12p1 1P1 6.9148 7.0093 7.0045
6 2p2 3P0 8.6847 8.7449 8.7663
7 2p2 3P1 9.3091 9.4082 9.4147
8 2p2 3P2 9.7533 9.8623 9.8660
9 2p2 1D2 10.9744 11.1209 11.1112
10 2p2 1S0 12.9700 13.1262 13.1167

Table 3. Energy levels (in Ry) for the 1s22s2, 1s22s12p1 and 1s22p2 configurations of W70+

obtained with the nonrelativistic R-matrix code (ICFT), the relativistic R-matrix code (DARC) and
the nonrelativistic R-matrix code that use the relativistic analogues of integrals (RI). Also given
are results obtained using the pseudorelativistic Hartree–Fock method (RHF) [5].

Index Level ICFT RHF DARC RI

1 2s2 1S0 −14472.2313 −14606.1630 −14661.2007 −14661.2127
2 2s12p1 3P0 11.8033 9.5122 12.7642 13.3690
3 2s12p1 3P1 14.4817 12.5698 15.6393 16.3163
4 2p2 3P0 32.9833 29.5304 35.8501 36.6611
5 2s12p1 3P2 101.4780 125.3516 123.2548 122.9797
6 2s12p1 1P1 107.3621 131.9927 129.7459 129.3913
7 2p2 3P1 119.6724 141.7643 142.9160 143.2261
8 2p2 1D2 121.6674 143.8498 144.8975 145.2266
9 2p2 3P2 210.3791 258.4229 254.3276 253.8651
10 2p2 1S0 214.6380 262.8561 258.6676 258.1166

expressing the small component of wavefunction in powers of the fine-structure constant α,
and leaving terms in the expansion of the relativistic integral up to (but not including) the
square of the fine-structure constant.
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Figure 1. Electron impact excitation collision strengths for the 2s2 1S0–2s12p1 3P0 transition
in C2+. Results have been calculated with (a) the nonrelativistic R-matrix code (ICFT), (b) the
relativistic R-matrix code (DARC-OXQUB) and (c) the nonrelativistic R-matrix code that use the
relativistic analogues of integrals.

To demonstrate the possibilities of the method, we present cross sections calculated for
transitions among the fine-structure levels of the 1s22s2, 1s22s12p1 and 1s22p2 configurations
in C2+, Fe22+ and W70+. Results are obtained adopting three different methods: (i) the
nonrelativistic R-matrix code, which uses intermediate coupling frame transformation (ICFT)
[4] (RmaX codes: http://amdpp.phys.strath.ac.uk/UK RmaX/); (ii) the relativistic
R-matrix code DARC-OXQUB [14] (http://www.am.qub.ac.uk/DARC) and (iii) the
aforementioned nonrelativistic code employing relativistic analogues of integrals. The
relativistic calculations (DARC-OXQUB) do not include Breit corrections. Also, only one-
electron terms of the Breit–Pauli corrections are implemented in the nonrelativistic case.

Bound orbitals of the targets are generated with the AUTOSTRUCTURE code
[15, 16] (http://amdpp.phys.strath.ac.uk/autos/) for the nonrelativistic calculations,



Letter to the Editor L83

(a)

(b)

(c)

Figure 2. Electron impact excitation collision strengths for the 2s2 1S0–2s12p1 3P0 transition in
Fe22+. Results have been calculated with (a) the nonrelativistic R-matrix code (ICFT), (b) the
relativistic R-matrix code (DARC-OXQUB) and (c) the nonrelativistic R-matrix code that use the
relativistic analogues of integrals.

while the GRASP0 code [17] (http://www.am.qub.ac.uk/DARC) is adopted for the
relativistic results. Wavefunctions calculated with AUTOSTRUCTURE program are obtained
in nonrelativistic LS-coupling approach, varying λnl scaling parameters within the statistical
Thomas–Fermi–Dirac model potential V (λnl) [18] to minimize a weighted sum of LS term
energies. The relativistic integrals submitted to the nonrelativistic code are obtained from the
output of the DARC-OXQUB package DSTG1/INTS module. The same R-matrix boundary
conditions and number of continuum orbitals (NRANG2 = 25) are used for every element
in the three above-mentioned methods. The relativistic integrals for the nonrelativistic code
are generated with the same boundary radii as used in the corresponding nonrelativistic
calculations. In addition, Buttle corrections [19] in the nonrelativistic code are not changed to
the relativistic ones when relativistic analogues of integrals are employed.

Energies of the fine-structure levels obtained with three above-mentioned methods are
presented for C2+, Fe22+ and W70+ in tables 1–3, respectively. A total of 10 levels arise from the
six terms of the configurations considered. The discrepancies among the energy levels obtained
for the different methods are only large for heavy and highly ionized tungsten (Z = 74), where
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Figure 3. Electron impact excitation collision strengths for the 2s2 1S0–2s12p1 3P0 transition in
W70+. Results have been generated with (a) the nonrelativistic R-matrix code (ICFT), (b) the
relativistic R-matrix code (DARC-OXQUB) and (c) the nonrelativistic R-matrix code that use the
relativistic analogues of integrals.

relativistic effects are important. For all cases, the nonrelativistic calculations with relativistic
integrals are closer to the values obtained with the DARC-OXQUB code. The disagreements
between the two methods can be explained by the omission of some small corrections which
originate from relativistic one-electron operators, as well as the Coulomb interaction operator
[13]. These omitted corrections have higher order powers than the square of the fine-structure
constant. On the other hand, the spin-other-orbit correction in our calculations only includes
terms which correspond to interactions of the electron with closed shells [9]. It is added to the
spin–orbit constant for a particular shell of electrons. For W70+, the energy levels calculated
using the pseudorelativistic Hartree–Fock method [5] are also presented in table 3. Relativistic
corrections are included by taking into account Darwin and mass–velocity operators in the
Hartree–Fock equations, while spin–orbit corrections are calculated employing the Blume–
Watson approach. These values are closer to the relativistic results than the nonrelativistic
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calculations, but the data obtained with the relativistic analogues of integrals are incomparably
better.

Our model calculations for electron impact excitation cross sections from the ground
level 1s22s2 1S0 to the first excited level 1s22s12p1 3P0 in C2+, Fe22+ and W70+ are shown in
figures 1–3, respectively. Good agreement among the calculations is found for C2+, as was also
the case for the energy levels in this ion. By contrast, Fe22+ shows small shifts in the threshold
structure of resonances (figure 2). However, cross sections obtained with the nonrelativistic
code for W70+ (figure 3(a)) have a higher background compared to the relativistic calculations
(figure 3(b)), and their resonance structure is contracted to the lower energy side. The
relativistic analogues of integrals employed in the nonrelativistic code remarkably improve
the results, with the cross section background becoming close to the relativistic background.
In addition, groups of resonances have similar structure in both datasets (see figures 3(b)
and (c)).

In summary, we have employed the relativistic analogues of integrals in the nonrelativistic
R-matrix code to illustrate the possibilities of this method. For this, the relationship for
relativistic analogues of multipole integrals is obtained. The method allows us to extend the
application of the nonrelativistic code to heavier elements, where relativistic wavefunctions
obtained from the Dirac equation should be used to obtain reliable results. Model calculations
obtained using nonrelativistic and relativistic codes, as well as the relativistic analogues of
integrals in the former, show the effectiveness and enormous potential of the present approach
for heavy elements and high-ionization stages.
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