
Mon. Not. R. Astron. Soc. 314, 99±108 (2000)

Measuring angular diameters of extended sources

P. A. M. van Hoofw²
Kapteyn Astronomical Institute, PO Box 800, 9700 AV Groningen, the Netherlands

University of Kentucky, Department of Physics and Astronomy, 177 CP Building, Lexington, KY 40506-0055, USA

Accepted 1999 December 6. Received 1999 December 6; in original form 1999 June 17

A B S T R A C T

When measuring diameters of partially resolved sources like planetary nebulae, H ii regions

or galaxies, often a technique called Gaussian deconvolution is used. This technique yields a

Gaussian diameter, which subsequently has to be multiplied by a conversion factor to obtain

the true angular diameter of the source. This conversion factor is a function of the FWHM of

the beam or point spread function, and also depends on the intrinsic surface brightness

distribution of the source.

In this paper, conversion factors are presented for a number of simple geometries: a circular

constant surface brightness disc and a spherical constant emissivity shell, using a range of

values for the inner radius. Also, more realistic geometries are studied, based on a spherically

symmetric photoionization model of a planetary nebula. This enables a study of optical

depth effects, a comparison between images in various emission lines, and the use of power-

law density distributions. It is found that the conversion factor depends quite critically on the

intrinsic surface brightness distribution, which is usually unknown. The uncertainty is

particularly large if extended regions of low surface brightness are present in the nebula. In

such cases the use of Gaussian or second-moment deconvolution is not recommended.

As an alternative, a new algorithm is presented which allows the determination of the

intrinsic FWHM of the source using only the observed surface brightness distribution and

the FWHM of the beam. Hence no assumptions concerning the intrinsic surface brightness

distribution are needed. Tests show that this implicit deconvolution method works well in

realistic conditions, even when the signal-to-noise ratio is low, provided that the beamsize is

less than roughly 2/3 of the observed FWHM and the beam profile can be approximated by a

Gaussian. A code implementing this algorithm is available.
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1 I N T R O D U C T I O N

The accurate measurement of angular diameters is a long-standing

problem. It is pertinent to the study of planetary nebulae, H ii

regions, galaxies and other extended sources. Nevertheless, only a

few papers dedicated to this problem can be found in the literature,

e.g. Mezger & Henderson (1967, hereafter MH), Panagia &

Walmsley (1978, hereafter PW), Bedding & Zijlstra (1994,

hereafter BZ), Schneider & Buckley (1996, hereafter SB) and

Wellman, Daly & Wan (1997). This paper will be written in the

context of planetary nebula research. However, most results will

also be valid in a more general context.

Several methods are in general use to determine angular

diameters. For nebulae with a well-defined outer radius (i.e., with

a steep drop-off to zero surface brightness at a certain radius) it is

easy to measure directly the radius where a prescribed value of the

surface brightness is reached. This prescribed value often is a

certain fraction of the peak surface brightness (usually 10 per

cent). This method will be called direct measurement. It is in

general use for observations of well-resolved sources, and will not

be studied in this paper. This method works, provided that obser-

vations of sufficient resolution and quality are available. This way,

no assumptions have to be made about the intrinsic surface

brightness distribution of the source, and this explains the popu-

larity of this method. It should be pointed out that in all other

cases (i.e., when the source is not well-resolved or when it does

not have a well-defined outer radius) assumptions have to be made

about the intrinsic surface brightness distribution in order to

interpret the results. In the remainder of the paper we will also

refer to the surface brightness distribution as surface brightness

profile or simply profile.

For observations where the source is only partially resolved,

one has to resort to different methods. One method is based on the

full width at half-maximum (FWHM) of a two-dimensional
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Gaussian fitted to the observed surface brightness distribution in a

least-squares sense. This method is usually called Gaussian

deconvolution and will be explained in more detail below. Another

method that is being used is basically identical to the first, except

that it determines the FWHM using the second moment of the

surface brightness distribution instead of a Gaussian fit. To

discriminate it from the first method, it will be called second-

moment deconvolution. The choice of either method depends

mainly on the preference of the observer. Both methods have the

disadvantage that they yield a result that has no direct physical

meaning. Hence a conversion factor is needed to translate the

result into something meaningful. In nebular research this usually

is the StroÈmgren radius. This conversion factor depends on the

method being used, the intrinsic surface brightness distribution of

the source and the size of the beam.

Another problem is that not all nebulae have a well-defined

outer radius. Often, when deeper images are made, more emission

is detected at lower surface brightness levels. Such nebulae will be

referred to as having a soft boundary. For such nebulae the 10 per

cent radius (or a radius at any other percentage level) does not

have a direct physical meaning and does not represent the nebular

size very well. The radius becomes increasingly larger when

deeper images are taken. The StroÈmgren radius can usually not be

observed directly either. Hence the size of such nebulae cannot be

represented in a meaningful way by a single number. In Section 7

it will be shown that also the application of Gaussian or second-

moment deconvolution to such nebulae leads to large uncertainties

and cannot be recommended.

The major disadvantage of Gaussian and second-moment

deconvolution is that assumptions have to be made about the

shape (but not the size) of the intrinsic surface brightness distri-

bution of the source. It will be shown in this paper that this choice

is quite critical. However, when only low-resolution observations

are available, one can make no more than an educated guess about

this distribution. As an alternative, a new algorithm is presented

which allows the determination of the intrinsic FWHM of the

source using only the observed surface brightness distribution and

the FWHM of the beam. Hence the major advantage of this

method is that it yields a deconvolved diameter without necessi-

tating assumptions concerning the intrinsic surface brightness

distribution. This process is not an image reconstruction algo-

rithm, and therefore requires far less computational overhead. It

should be pointed out that it can only give the FWHM diameter

and not the StroÈmgren diameter. For the latter conversion,

assumptions concerning the shape of the nebula will always be

necessary.

This paper will have the following structure. In Section 2 some

basic assumptions and definitions will be given. Also, the methods

used to calculate the conversion factors will be discussed. In

Section 3 conversion factors will be given for various simple

geometries: a circular constant surface brightness disc and a

spherical constant emissivity shell, using a range of values for the

inner radius. In Section 4 these results will be compared to

previous studies found in the literature, and a discussion will be

given. Next, the conversion factors will be studied using more

realistic geometries based on a photoionization model of a

planetary nebula. In Section 5 the influence of optical depth

effects on the observed surface brightness distribution and on the

conversion factor will be studied. In Section 6 images constructed

in several optical emission lines will be compared, and the

influence on the conversion factor will be discussed. In Section 7

the effect of non-constant density laws on the conversion factor

will be studied. These density laws allow a discussion of the

appropriateness of Gaussian or second-moment deconvolution for

nebulae with a soft boundary. In Section 8 a new method will be

presented which allows the determination of the intrinsic FWHM

of a profile, using only the observed profile and the beamsize.

Finally, in Section 9 the main conclusions will be presented. The

theory used to calculate the conversion factors has been presented

in van Hoof (1999, hereafter Paper I). This paper is available

through the e-print archive at http://xxx.lanl.gov under

number astro-ph/9906051.

2 D E F I N I T I O N S A N D C O M P U TAT I O N A L

M E T H O D S

The methods discussed in the present paper can be applied to

observations at any wavelength. More specifically, they are valid

for optical, infrared and radio observations. The resolution of

these observations is usually characterized by the size of the beam

profile for radio data, and by the size of the point spread function

for optical or infrared data. Throughout the paper the term `beam'

will be used, and it will be implicitly understood that it can also

mean `point spread function' where appropriate. It will be

assumed that the beam can be approximated by a Gaussian.

This is a reasonable assumption, both for radio and for optical

observations. First, in the reduction of radio observations, the

(possibly complicated) antenna pattern of the telescope is replaced

by a perfect Gaussian of the same resolution in the clean

procedure. Second, for optical observations the point spread

function is normally determined by the seeing, which can be

approximated by a Gaussian. This approximation is, however,

valid only for the core region of the point spread function; further

out it is better represented by an inverse square law (e.g. King

1971). This implies that care should be taken when interpreting

low-level emissions surrounding barely resolved nebulae; accurate

knowledge of the point spread function is required in such cases

(Falomo 1996). In this paper the intrinsic surface brightness

profile will be defined as the surface brightness distribution that

would be observed with infinite resolving power. For simplicity, it

will be assumed throughout this paper that both the surface

brightness distribution of the nebula and the beam are circularly

symmetric. This is a rather severe restriction; nebulae rarely are

circular and also, for radio observations, the beam usually is

elliptical. However, this simplified case already yields interesting

results which can be applied to actual data. Since both the intrinsic

profile of the nebula and the beam profile are assumed to be

circularly symmetric, they can be represented as one-dimensional

functions measuring the profile radially outwards from the

centre.

As already noted, a conversion factor is needed to translate the

FWHM diameter yielded by Gaussian or second-moment

deconvolution into a StroÈmgren diameter. In this paper the

StroÈmgren radius of the nebula will be denoted by rs, and the true

diameter by Qd � 2rs: The FWHM of the observed nebular image

will be denoted by F, and the FWHM of the beam by Fb.

Throughout the paper the deconvolved FWHM diameter Fd will

be used, which is defined by

Fd �
������������������
F2 2 F2

b

q
: �1�

This quantity is also commonly called the Gaussian diameter. The

conversion factor to obtain the true angular diameter from the
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deconvolved FWHM can be defined as

Qd � gFd ) g � Qd=Fd � 2rs=Fd: �2�

The deconvolved FWHM should not be confused with the FWHM

of the deconvolved profile, which in general will not be equal. The

latter will be called the intrinsic FWHM. The conversion factor g
is a function of the resolution of the observation, or to be more

precise, of the ratio of the source diameter and the beamsize.

Hence an independent parameter b is chosen, which is defined as

b � Fd=Fb: �3�

In the following sections more details will be given of the

techniques that have been used to calculate the conversion factors,

both for Gaussian and second-moment deconvolution.

2.1 Gaussian deconvolution

First, the technique that has been used to calculate conversion

factors for Gaussian deconvolution will be discussed. This

technique is based on an implicit equation from which the value

of g (b ) can be solved for arbitrary b. The derivation of this

expression has been presented in section 3 of Paper I. To use this

technique, first the radial moments cn of the assumed intrinsic

surface brightness profile f �r� have to be computed. They are

defined as

cn � 2p

�1

0

f �r�rn11 dr;

and are computed using either an analytic expression (if available)

or a numerical integration scheme. Next, these radial moments

and also the value for b are substituted in equation (4):

X1
n�0

c2ng
2n�b� lnn 2

n!

Xn

k�0

�21�n2k
n

k

 !

� �b2 2 2k�b2n22 b2 1 1

b2 1 2

� �k

� 0: �4�

The value for the conversion factor g is solved iteratively using a

Newton±Raphson scheme. If this procedure is repeated for a

range of values for b, the behaviour of the conversion factor g(b )

as a function of b can be found.

In order to represent the results efficiently, a simple analytic

function will be fitted to the conversion factors. Tests have shown

that g(b ) can be approximated extremely well by the following

function:

gf �b� �
a1

1 1 a2b
2

1 a3; �5�

which will be used throughout this paper. The fit is determined by

minimizing the reduced x2, which is defined as

x2 � 1

N

XN

n�1

�g�bn�2 gf �bn��2: �6�

Here N is the total number of points at which the conversion factor

has been evaluated [usually 251, with bn � 0 �0:02� 5].1

2.2 Second-moment deconvolution

Second moments are widely used to calculate the FWHM of an

arbitrary profile. In general, however, the result of this method

will not be identical to the FWHM derived from a Gaussian fit.

Hence, also the value for the conversion factor will be different.

To distinguish the results of the two methods, a subscript 2 will be

used on all quantities derived with the second-moment method. In

Paper I, section 5 it has been proven that when second-moment

deconvolution is used, the conversion factor is constant (i.e.,

independent of beamsize). Furthermore, this constant value is

equal to the value of the conversion factor for Gaussian decon-

volution in the limit for infinitely large beams. In other words, the

conversion factor for second-moment deconvolution is given by

g2�b� � g�0� for all b [ �0;1�:
Due to this relation it is not strictly necessary to give separate

results. The value for the conversion factor for second-moment

deconvolution can always be calculated using the following

expression

g2 < gf �0� � a1 1 a3: �7�
Given the quality of the fitting function g f, this yields results with

more than sufficient accuracy (a few times 1023 down to a few

times 1024).

3 T H E C O N V E R S I O N FAC T O R F O R S I M P L E

G E O M E T R I E S

The methods which have been discussed in the previous section

are applied to images which are only partly resolved. Hence they

contain little direct information on the intrinsic surface brightness

profile. If no other information is available, the intrinsic surface

brightness profile has to be assumed in order to calculate the

conversion factor. In such cases, the choice is usually a very

simple geometry. In this section, conversion factors will be

determined for the geometries that were presented in BZ. These

are the constant surface brightness disc (the limiting case of a

spherically symmetric nebula which is completely optically thick,

or alternatively a nebula with cylindrical symmetry viewed along

the axis), and the constant volume emissivity shell and sphere (the

limiting case of a spherically symmetric nebula with zero optical

thickness). These cases will be treated in more detail here, and

also shells with an arbitrary inner radius will be treated. The

sphere can be viewed as the limiting case of a shell with zero inner

radius.

3.1 The constant surface brightness disc

The conversion factors for Gaussian deconvolution are shown in

Fig. 1, and the parameters for the fit are given in Table 1. The

residuals of the fit are also shown in Fig. 1. Additionally, the

conversion factor for second-moment deconvolution is given in

Table 1. In Table 2 the conversion factor and the FWHM for the

unconvolved profile are given. These numbers are intended as

benchmarks, and can be useful for testing Gaussian fit algorithms.

The values were calculated using equation (8), which can be

solved using a Newton±Raphson scheme:X1
n�0

�21�n �2n 1 1� c2ng
2n lnn 2

n!
� 0;

F

rs

� 2

g
: �8�
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This formula can derived from equation (4) by taking the limit

b! 1: It constitutes a new way of measuring the FWHM of an

observed profile, and is discussed in more detail in Paper I. The

values given in Table 2 are accurate in all decimal places.

3.2 The constant emissivity shell

Conversion factors were also computed for the case of a constant

emissivity shell with a range of values for the ratio of the inner to

outer radius: ri=rs � 0:0 (0.1) 1.0. The results are shown in Fig. 2,

and the fit parameters are given in Table 1. Again the quality of

the fits is very good. It can be seen that the shape of the curve does

not change very much as a function ri/rs, but that the height of the

curve does. This means that the correct value for the conversion

factor does depend quite critically on the assumed value for the

inner radius. The conversion factors for second-moment deconvo-

lution are also given in Table 1. The conversion factor and the

FWHM for the unconvolved profiles are given in Table 2. See also

the remarks in Section 3.1.

4 C O M PA R I S O N O F T H E R E S U LT S

In this section the results from Section 3 will be compared with

other results. First, the conversion factors will be compared to the

results from a more straightforward approach. This is done to

verify the correctness of the procedure used in this paper. This

comparison will be limited to the geometries that were already

studied in the literature: the constant surface brightness disc, the

constant emissivity sphere and the constant emissivity shell with

ri=rs � 0:8: Next, the results from this paper will be compared to

published data.

4.1 Comparison with a different technique

In order to verify the procedure described in Section 2.1 for

q 2000 RAS, MNRAS 314, 99±108

Table 1. The parameters for calculating conversion factors.
Results are given for a constant surface brightness disc and for a
constant emissivity shell with various ratios of the inner to outer
radius (as indicated in column 1). The conversion factors for
Gaussian deconvolution can be calculated using equation (5);
the conversion factors for second-moment deconvolution are
given separately in the last column.

case a1 a2 a3 x2 g2

disc 0.3512 0.7874 1.3469 5.4(28)² 1.6986

shell 0.0 0.3358 0.7907 1.5629 4.1(28) 1.8991
shell 0.1 0.3368 0.7896 1.5609 4.3(28) 1.8982
shell 0.2 0.3431 0.7835 1.5482 5.1(28) 1.8918
shell 0.3 0.3563 0.7745 1.5187 6.3(28) 1.8756
shell 0.4 0.3729 0.7694 1.4733 6.8(28) 1.8468
shell 0.5 0.3875 0.7715 1.4168 6.5(28) 1.8049
shell 0.6 0.3959 0.7786 1.3546 6.1(28) 1.7510
shell 0.7 0.3963 0.7871 1.2909 5.9(28) 1.6877
shell 0.8 0.3893 0.7940 1.2281 5.7(28) 1.6180
shell 0.9 0.3766 0.7981 1.1678 5.4(28) 1.5449
limit 1.0 0.3600 0.7994 1.1106 5.0(28) 1.4711

² 5.4(28) stands for 5:4 � 1028.

Table 2. The conversion factor and
the FWHM for the unconvolved
disc and shell profiles.

case g(1) F/rs

disc 1.346 346 1.485 502

shell 0.0 1.562 397 1.280 084
shell 0.1 1.560 415 1.281 710
shell 0.2 1.547 616 1.292 310
shell 0.3 1.518 086 1.317 449
shell 0.4 1.472 623 1.358 121
shell 0.5 1.416 124 1.412 306
shell 0.6 1.353 972 1.477 135
shell 0.7 1.290 243 1.550 095
shell 0.8 1.227 504 1.629 323
shell 0.9 1.167 188 1.713 520
limit 1.0 1.110 004 1.801 795

Figure 2. The conversion factor for constant emissivity shells, for various

ratios of the inner to outer radius (ri/rs).

Figure 1. The conversion factors for a constant surface brightness disc

(upper panel) and the residuals of the fit to these conversion factors (lower

panel). The dot-dashed line in the upper panel indicates the value for g (1).
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calculating conversion factors for Gaussian deconvolution, a more

straightforward approach was used to check the results. This

technique essentially mimics the procedure used in real observa-

tions: a given intrinsic surface brightness profile is convolved with

a Gaussian of prescribed width, and subsequently Gaussian

deconvolution is applied using a standard Gaussian fit routine.

In order to distinguish the two techniques, the procedure described

in Section 2.1 will be called method A, and the procedure

described here will be called method B. The reason that method A

was adopted throughout the paper is that it is by far the fastest and

most accurate method.

For the three geometries that have been mentioned above, the

results of method A were found to be in excellent agreement with

the results of method B. For the disc case it was found that x2 �
4:6 � 1027; for the shell case x2 � 7:4 � 1028; and for the sphere

case x2 � 3:0 � 1028 (see equation 6). This proves the correctness

of method A. The comparison is also displayed in Fig. 3.

Since the calculation of the conversion factors for second-

moment deconvolution is closely linked to the calculation of the

conversion factors for Gaussian deconvolution (see Section 2.2),

this also proves the correctness of our results for the second-

moment method.

4.2 Comparison with published results

Four papers have been previously published which were (at least

in part) dedicated to calculating conversion factors for circularly

symmetric profiles. These are MH, PW, BZ and SB. A comparison

of all the results is shown in Fig. 3. It should be noted that in all

these papers the Gaussian deconvolution method was used.

Second-moment deconvolution has never been studied before in

the literature, and hence no comparison can be given for the

results of this method.

MH assumed that conversion factors are independent of the

beamsize. They derived the conversion factors by comparing the

diameter of an unconvolved disc or sphere to a Gaussian with

the same peak surface brightness and total flux. Hence one could

say that they assumed b � 1: However, their method is clearly

not appropriate, since fitting a Gaussian to a given profile does not

conserve the flux, nor does it conserve the peak surface brightness.

It can be seen that their results are substantially lower than the

results from this study.

PW re-examined the conversion factors for both geometries.

They concluded that the conversion factors depend on the beam-

size, and that adopting the results of MH will generally lead to an

underestimation of the nebular diameter. The value of the

conversion factor for b � 0 was calculated using an analytic

expression. The method they used to calculate the other points is

not clearly described. It can be seen that for b � 0 their results

coincide with the results of this paper. However, for larger b an

increasing discrepancy between the results becomes apparent. In

the disc case they even find a minimum in g(b ) which is not

reproduced in this work. These discrepancies will be discussed

together with the results of SB.

BZ re-examined the conversion factors for the disc and the

sphere cases, and also added the case of a shell geometry. The

method they used was essentially identical to method B. Dr A. A.

Zijlstra kindly provided me with a table from which the values of

b and g could be determined. These results are clearly the most

accurate of all literature data. It seems that BZ systematically

make a slight overestimation of the conversion factor for larger

values of b . An explanation for this is not apparent to the author.

SB studied only the disc geometry. They were the first to use an

analytic fit to the conversion factor as a function of b . The method

they used was essentially identical to method B. In their results it

can be seen that the conversion factor is progressively under-

estimated for larger b. The most likely explanation for this result

(and also for the results of PW) is as follows. The Gaussian fit to

the (convolved) surface brightness profile is determined by

minimizing the quadratic residuals, which is defined as an integral

over an infinite region. In a numerical code this integral is

replaced by an integral over a finite region, where the upper limit

of this region should be large enough not to influence the result. If

the upper limit is chosen too low, the fit will not be `punished' for

the tails of the Gaussian outside the integration region. In the case

of a disc geometry this will lead to an overestimation of the

FWHM, as is shown in Fig. 4 (solid curve). In view of this result,

it is recommended to use a diameter for the fitting region which is

at least 3 times the FWHM diameter of the fit, irrespective of

whether the nebula has a non-zero surface brightness in the whole

of this region or not. For nebulae with extended faint emission the

integration region should encompass the whole of the nebula, of

course. In the case where the surface brightness profile is a perfect

Gaussian (which is the case in the limit for infinitely large

beamsizes, b � 0), the mentioned effect does not exist. The

residuals will be zero everywhere, and the upper limit of the

integration region is irrelevant. The bigger the discrepancy

between the actual profile and a perfect Gaussian is (i.e., the

larger b is), the more the fit will be affected by the effect. This is

exactly what can be seen in the results of PW and SB. The local

q 2000 RAS, MNRAS 314, 99±108

Figure 3. Comparison of this work with previous results. Methods A and B

are explained in the text. The arrows `limit MH' indicate the value for

g (1) obtained by Mezger & Henderson (1967).
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minimum that was found by PW for the disc case may have been

caused by the fact that they used a larger integration region for the

last point, although this is not clear from their paper.

Another point of caution is the following. In order to obtain an

accurate value for the FWHM of an observed source, it is essential

that the global background in the image is subtracted first so that it

can assumed to be zero in the fitting procedure. This was done to

produce the solid curve in Fig. 4. One might be tempted to try and

determine the FWHM and the background simultaneously in the

fitting procedure. However, this gives very bad results, as is

indicated by the dotted curve in Fig. 4. Here a Gaussian

a1 exp�2a2r2�1 a3 was fitted to the constant surface brightness

disc, treating a3 as a free parameter. One can readily see that the

results are poor. The radius of the fitting region has to be very

large to get even moderately accurate results. The cause of this is

that the fit is not punished for the fact that the Gaussian drops

below the background at infinity, which in turn gives it the

freedom to make the Gaussian wider and thus obtain a better fit

inside the integration region.

For very small values of b , SB find higher values for the

conversion factor than this study. This is probably an artefact of

the fitting function adopted by SB. It was found to give lower

quality fits than the fitting function adopted in this paper, while it

has the same number of free parameters. The conversion factor

g(b ) has a first derivative which is zero at b � 0; as is also the

case for the fitting function adopted in this paper. This is, however,

not the case for the fitting function adopted by SB. Since it is

impossible to compute the conversion factor for very small b
using method B (as was done by SB), their fit will not be

constrained for those values, and thus their choice of fitting

function will give results which are too high near b � 0:
When the results of PW are viewed for large beamsizes, it can

be seen that the conversion factor is roughly 1.7 in the disc case,

and roughly 1.9 in the sphere case. This had led to the popular

notion that the deconvolved FWHM should be multiplied by 1.8 to

obtain the correct diameter, independent of beamsize and intrinsic

surface brightness distribution. The popularity of this assumption

should in all probability be attributed to its simplicity. However,

from the previous discussion it becomes clear that quite

substantial errors can be made this way, as was already pointed

out by PW. The magnitude of these errors can easily be greater

than the observational uncertainties in the measurement itself.

Hence this simplification cannot be justified. This implies that

assumptions about the intrinsic surface brightness profile are

unavoidable. Since there obviously is room for discussion about

these assumptions, the author would like to urge all observers to

publish besides the derived angular diameter (which depends on

these assumptions) also both the deconvolved FWHM (which does

not depend on these assumptions) and the beamsize.

5 O P T I C A L D E P T H E F F E C T S

In the previous sections several simple geometries have been

studied where an analytic expression for the intrinsic surface

brightness profile can be assumed. However, in the following

sections more realistic geometries will be studied. These will be

based on a photoionization model of a planetary nebula. The

procedure to calculate the conversion factors in this case is as

follows. A table with the emissivity and the absorption coefficient

as a function of distance to the star is calculated with a modified

version of the photoionization code cloudy 84.12a (Ferland

1993). When the emissivities and the absorption coefficients are

known, the radiative transport equation can be integrated numeri-

cally, assuming spherical symmetry and neglecting scattering

processes. This is done by a separate code which yields an intrin-

sic surface brightness profile. This profile can then be used to

determine the conversion factors using the procedure already

described in Section 2.1.

To study the effect of varying optical depth with wavelength,

q 2000 RAS, MNRAS 314, 99±108

Figure 4. The FWHM resulting from a Gaussian fit to a constant surface

brightness disc as a function of the radius of the fitting region. The dot-

dashed line indicates the value of the FWHM for an infinitely large fitting

region, i.e., the correct value given in Table 2.

Figure 5. The surface brightness profiles (upper panel) and the conversion

factors (lower panel) computed at wavelengths of 2, 6, 20 and 60 cm. The

maximum surface brightness has been normalized to unity.
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the results of the planetary nebula model at various wavelengths in

the radio regime have been used. The physical process responsible

for emission and absorption at these wavelengths is free±free

interaction between protons and electrons. It is a well-known fact

that the optical depth t due to free±free absorption increases

towards longer wavelengths as t / l2:1 (e.g. Pottasch 1984). The

input parameters for cloudy were taken from the NGC 7027

model discussed in Beintema et al. (1996). This nebula was

chosen solely for the purpose of getting a realistic model. The fact

that NGC 7027 is quite large and thus well resolved in most

observations is of no importance. One could assume that another

nebula is modelled which is very similar to NGC 7027, but at a

much larger distance. Using this model, the shape of the surface

brightness profile at various wavelengths could be determined. It

turns out that the surface brightness profile is very sensitive to

optical depth effects. To illustrate this, various profiles are shown

in the upper panel of Fig. 5. The conversion factors to obtain the

true angular diameter at the various wavelengths are shown in the

lower panel of Fig. 5. The nebula is only marginally optically

thick at 6 cm, but this already has a noticeable effect on the

conversion factor. At 20 cm the nebula is mildly optically thick,

and this has a strong effect on the conversion factor.

The effect may be less in other nebulae. However, in general

this cannot be assumed a priori, and thus care should be taken

when comparing measurements taken at different wavelengths.

This is true not only because of the effects described above, but

also because at different wavelengths the beamsize will be differ-

ent; hence b will be different, and this will influence the con-

version factor as well when Gaussian deconvolution is used.

6 I M AG I N G I N E M I S S I O N L I N E S

Since optical images are also used to determine the radius of a

nebula, the conversion factors for these images will be investigated

as well. For this, the same model was used as discussed in the

previous section. The emissivity was assumed to be the volume

emissivity of the following emission lines: Ha , Hb , [N ii]

ll6548, 6584 and [O iii] l5007. The contribution of continuum

emission in the images was neglected. When solving the radiative

transport equations, continuum optical depth effects were

included, but not line optical depth effects. Next, the surface

brightness profiles were computed for images taken in pure Ha
light, in Ha1[N ii] ll6548, 6584, in Hb and in [O iii] l5007.

The results are shown in the upper panel of Fig. 6. Finally, the

conversion factors were computed for these profiles. The

parameters for the fits are given in Table 3, and the curves are

shown in the lower panel of Fig. 6.

The first thing that can be noticed is that the surface brightness

profiles in the various emission lines look completely different,

and that they also differ from the radio surface brightness profiles

shown in Fig. 5. Also, the positions for the peak surface brightness

are completely different. This implies that even in well-resolved

images, the measured diameter can be different, depending on

which line is used. This is a well-known effect caused by

ionization stratification. Given this, it can already be expected that

the conversion factors should be different for the various images

as well, which is indeed confirmed. The conversion factors for

images in pure Ha and Hb light are nearly identical, which can be

expected from the fact that the relative level populations depend

only mildly on electron temperature and density. However, this

situation completely changes when the [N ii] lines are included in

the passband of the Ha filter (as is usually the case). This has a

considerable effect on the conversion factor. Also, the conversion

factors for the [O iii] image are quite different from the Hb case,

but, by chance, nearly coincide with the values for the Ha1[N ii]

image. It can be seen that all conversion factors for the optical

images are considerably smaller than the values for the (optically

thin) 2-cm radio image.
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Figure 6. The intrinsic surface brightness profiles (upper panel) and the

conversion factors (lower panel) in various emission lines. The maximum

surface brightness has been normalized to unity. The conversion factors for

the 2-cm radio image are also shown for reference.

Table 3. The parameters for calculating conversion
factors in different observing modes. The conversion
factors for Gaussian deconvolution can be calculated
using equation (5), and the conversion factors for second-
moment deconvolution can be calculated using equation
(7).

case a1 a2 a3 t²

radio 2 cm 0.3428 0.7853 1.6222 1.44(22)
radio 6 cm 0.3429 0.7860 1.6067 1.46(21)
radio 20 cm 0.3462 0.7892 1.4767 1.81(10)
radio 60 cm 0.3529 0.7870 1.3708 1.79(11)
radio 200 cm 0.3433 0.7854 1.3753 2.18(12)

Ha 0.3605 0.7822 1.4937 4.53(21)
Ha1[N ii] 0.3569 0.7867 1.3656 4.53(21)
Hb 0.3644 0.7817 1.4842 6.30(21)
[O iii] 0.4083 0.7892 1.3176 6.11(21)

² The optical depth is measured from the centre of the
nebula to the outer edge.
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From this, the conclusion can be drawn that angular diameters

measured in different images (including radio observations) can

not be compared directly, even when they are well-resolved. In

general, the conversion factors for the various images will be

different, depending on the intrinsic surface brightness profile and

the beamsize of the observation. For the cases that have been

studied above, differences exceeding 30 per cent are possible.

7 N O N - C O N S TA N T D E N S I T Y G E O M E T R I E S

The nebular model that has been discussed so far assumes a

constant hydrogen density within the ionized region. This

automatically leads to a well-defined boundary of the nebula. To

investigate how the conversion factors behave for nebulae with

soft boundaries, the density law was changed in the following

way. For the inner parts of the nebula �lg�r=cm� , 16:6� the

density law remained unchanged (i.e., constant), but for the outer

parts an ra law was assumed. This roughly models a nebula where

the inner parts have undergone hydrodynamic interactions with the

fast post-AGB wind, but where the outer parts are not yet disturbed.

Values of a were used ranging from 0.0 down to 21.5. All the other

parameters of the model were kept unaltered. For all models a radio

image was calculated at a wavelength of 2 cm. The surface

brightness profiles and conversion factors are shown in Fig. 7. In

Table 4 the parameters for the fits to the conversion factors together

with the true angular diameters of the nebulae can be found.

The first thing that can be noticed is that the conversion factor

becomes increasingly large as a becomes more negative. This can

be easily understood when the nature of the changes to the density

profile are viewed. Since a large part of the constant density

regime within the ionized region remains unaltered when a is

changed, the high surface brightness core of the nebula also

remains more or less unaltered. Since the FWHM is mainly

determined by the core region, the deconvolved FWHM will not

change much as a function of a . However, the StroÈmgren radius is

very sensitive to a , as can be seen from Table 4. This implies that

the conversion factor must also be a sensitive function of a . If the

StroÈmgren radius is chosen as a physically meaningful radius, this

makes it almost impossible to measure this radius from low-

resolution observations if density distributions similar to the ones

discussed here are suspected. It is the author's opinion that in such

a case the only meaningful thing to do is to publish the

deconvolved FWHM and the beamsize, and not to make any

attempt to calculate the StroÈmgren radius.

8 A N E W A L G O R I T H M T O D E T E R M I N E T H E

I N T R I N S I C F W H M

In Paper I it has been shown that the deconvolved FWHM

obtained from second-moment deconvolution is independent of

the beamsize, and therefore equal to the (second-moment) FWHM

of the intrinsic profile. Hence this method has the advantage that

the FWHM of the unconvolved profile can be obtained directly

from the observations without making any assumptions about the

shape of the profile. Both from Paper I and this paper it has

become clear that Gaussian deconvolution does not have this

property, and assumptions about the intrinsic profile are always

necessary. From the previous section it is also clear that such

assumptions are not always warranted. This situation is not very

satisfactory, and therefore a new algorithm will be presented here

which will remedy this problem. This algorithm will yield the

(Gaussian fit) FWHM of the intrinsic profile, given the observed

profile and the FWHM of the beam, without making any

assumptions about the intrinsic profile. To use this method, one

has to determine the radial moments c2n 0 of the observed (i.e.,

convolved) profile and convert them to the radial moments of the

intrinsic (i.e., unconvolved) profile c2n. The radial moments c2n 0

are related to c2n by equation (9):

c2n 0 �
Xn

k�0

n!2

�n 2 k�!k!2
c2k

pn2k
; p ;

4 ln 2

F2
b

) c0 0 � c0;

c2 0 � c2 1
c0

p
; c4 0 � c4 1

4c2

p
1

2c0

p2
;¼ �9�
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Figure 7. The intrinsic surface brightness profiles (upper panel) and the

conversion factors (lower panel) for different density distributions. The

maximum surface brightness has been normalized to unity.

Table 4. The parameters for calculating the
conversion factors for various density profiles.
The conversion factors for Gaussian deconvolu-
tion can be calculated using equation (5), and the
conversion factors for second-moment deconvo-
lution can be calculated using equation (7). The
diameter is given in arbitrary units.

a Qd a1 a2 a3

0.00 1.137 0.3428 0.7853 1.6222
20.50 1.261 0.3188 0.7911 1.7573
21.00 1.504 0.2418 0.8397 2.0415
21.25 1.747 0.1253 1.1091 2.3545
21.40 1.994 20.078 0.078 2.740
21.50 2.250 20.252 0.476 3.103
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This relation can easily be inverted

c0 � c0 0 ; c2 � c2 0 2
c0 0

p
; c4 � c4 0 2

4c2 0

p
1

2c0 0

p2
;¼

These relations constitute the actual deconvolution. In order to

obtain the FWHM of the deconvolved profile (which we will call

the intrinsic FWHM), the values of c2n resulting from this

calculation have to be substituted in equation (8). A derivation of

this algorithm is presented in sections 4 and 5 of Paper I. This

method uses the fact that information about the intrinsic profile is

implicitly contained in the radial moments of the convolved

profile, and will therefore be called implicit deconvolution.

In the remainder of the section this method will be tested on

artificial data. To this end the three simple geometries that where

already discussed in Section 4 will be used. In order to simulate

realistic observing conditions, these surface brightness distribu-

tions were convolved with a Gaussian beam of prescribed width,

and observational noise was added using a Poisson noise

generator. For this, the photon count of the peak surface brightness

was prescribed. Additionally a read-out noise of 6 counts was

assumed. The pixel scale of the CCD was chosen such that in each

case the FWHM of the beam corresponded to approximately

5 pixels. The results of the tests are shown in Table 5. Before the

results of the implicit deconvolution method are discussed, two

remarks will be made concerning the alternative method to

measure the FWHM (given by equation 8).

In Paper I it was shown that this method yields identical results

to a Gaussian fit algorithm. This is true when the profile is

perfectly sampled. However, in real data the profile is only

partially sampled, and this may lead to small discrepancies

between the two methods on the order of the measurement

uncertainty in the FWHM.

A second concern is that, due to noise, negative values for

pixels can occur in the low surface brightness areas. The theory

presented in Paper I is strictly speaking not valid for such

profiles. In practice, however, this was found not to give any

problems. All measurements of the convolved FWHM (F)

presented in Table 5 converged, even in the poorest signal-to-

noise conditions.

The results in Table 5 show that the implicit deconvolution

method gives stable results in realistic conditions, provided the

beamsize is less than roughly 2/3 of the observed FWHM. The

accuracy of the resulting intrinsic FWHM can be judged by

comparing it to the results in Table 2. By looking at the high-

signal-to-noise results, one can see that small discrepancies can

occur. These can be attributed to the fact the observed profile was

only sampled with a very small number of pixels, as was discussed

above. It is interesting to note that the implicit deconvolution

method is not hampered by low-signal-to-noise conditions, in the

sense that the maximum beamsize for which the method still

works is hardly affected by low-signal-to-noise conditions. It is

therefore concluded that the implicit deconvolution method works

well in realistic conditions, even when the signal-to-noise is low,

provided that the beamsize is less than roughly 2/3 of the observed

FWHM, and the beam profile can be approximated by a Gaussian.

It can be a good alternative for Gaussian deconvolution of

partially resolved sources, since it requires no assumptions on the

intrinsic surface brightness distribution. However, in order to

convert the intrinsic FWHM of the source into the StroÈmgren

diameter, knowledge about the intrinsic surface brightness

distribution is still needed. A fortran program implementing
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Table 5. The results from the implicit deconvolution method for a disc, sphere and shell geometry as defined in Section 3. The
number following the name of the geometry indicates the photon count at the maximum surface brightness. Fb indicates the
FWHM of the beam, F the FWHM of the convolved profile, and Fin the intrinsic FWHM. In each case the measurements were
repeated 24 times using a different seed for the random generator; the quoted FWHM is the average of all cases where the
method converged, s indicates the standard deviation (68 per cent confidence interval) of an individual measurement. Cases
where the implicit deconvolution method converged less than 12 times are omitted from the table. In all cases the beamsize is
assumed to be measured with high accuracy.

disc ± 500 disc ± 5000 disc ± 50000
Fb F s Fin s F s Fin s F s Fin s

0.25 1.493 0.006 1.486 0.006 1.4930 0.0014 1.4858 0.0014 1.4934 0.0005 1.4861 0.0006
0.35 1.501 0.011 1.486 0.011 1.5021 0.0025 1.4866 0.0026 1.5021 0.0008 1.4867 0.0009
0.50 1.520 0.012 1.485 0.013 1.5200 0.0038 1.4856 0.0041 1.5211 0.0013 1.4868 0.0013
0.71 1.563 0.018 1.481 0.023 1.5672 0.0054 1.4871 0.0068 1.5686 0.0016 1.4887 0.0020
1.00 1.673 0.032 1.476 0.043 1.6808 0.0084 1.4902 0.0132 1.6822 0.0026 1.4921 0.0039
1.41 1.917 0.045 1.9261 0.0116 1.9276 0.0035

sphere ± 500 sphere ± 5000 sphere ± 50000
Fb F s Fin s F s Fin s F s Fin s

0.25 1.296 0.008 1.284 0.008 1.2946 0.0019 1.2832 0.0019 1.2949 0.0007 1.2834 0.0011
0.35 1.313 0.012 1.288 0.013 1.3132 0.0034 1.2885 0.0037 1.3137 0.0011 1.2890 0.0012
0.50 1.335 0.012 1.282 0.014 1.3365 0.0042 1.2842 0.0048 1.3379 0.0013 1.2857 0.0015
0.71 1.395 0.022 1.277 0.031 1.4013 0.0058 1.2862 0.0085 1.4025 0.0018 1.2875 0.0026
1.00 1.536 0.033 1.5433 0.0087 1.2956 0.0169 1.5447 0.0027 1.2926 0.0054
1.41 1.815 0.043 1.8240 0.0114 1.8254 0.0035

shell 0.8 ± 500 shell 0.8 ± 5000 shell 0.8 ± 50000
Fb F s Fin s F s Fin s F s Fin s

0.25 1.637 0.007 1.633 0.007 1.6366 0.0014 1.6326 0.0014 1.6370 0.0004 1.6330 0.0004
0.35 1.641 0.010 1.632 0.010 1.6415 0.0023 1.6326 0.0024 1.6416 0.0007 1.6328 0.0008
0.50 1.652 0.012 1.631 0.012 1.6522 0.0037 1.6311 0.0038 1.6532 0.0012 1.6322 0.0012
0.71 1.682 0.014 1.628 0.016 1.6845 0.0045 1.6313 0.0052 1.6858 0.0014 1.6327 0.0016
1.00 1.766 0.029 1.625 0.037 1.7747 0.0077 1.6336 0.0095 1.7760 0.0023 1.6347 0.0033
1.41 1.981 0.044 1.9917 0.0114 1.9932 0.0035
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the algorithm discussed in this section is available from ftp://
gradj.pa.uky.edu/pub/peter/genfit.f.

9 C O N C L U S I O N S

In this work, conversion factors have been determined to convert

the deconvolved FWHM of a partially resolved nebula to its true

diameter. It was already found by MH that this conversion factor

depends on the (assumed) intrinsic surface brightness profile of

the nebula. In a subsequent study by PW it was found that the

conversion factor also depends on the beamsize of the observation

when Gaussian deconvolution is used. This paper expands on

previous work in that an alternative method for deconvolving the

FWHM, second-moment deconvolution, is studied for the first

time. Also, the influence of the intrinsic surface brightness profile

on the conversion factor is studied in more detail. The following

recommendations and conclusions were reached. Unless explicitly

noted otherwise, they are valid both for Gaussian and second-

moment deconvolution, and also for observations at arbitrary

wavelengths.

(i) When making a Gaussian fit to a surface brightness profile, it

is recommended to use a diameter for the fitting region which is at

least 3 times the FWHM diameter of the fit in all cases. A larger

fitting region should be used if extended faint emission is present.

In order to obtain an accurate value for the FWHM of an observed

source, it is essential that the global background in the image is

subtracted first so that it can assumed to be zero in the fitting

procedure. Trying to determine the FWHM and the background

simultaneously in the fitting procedure is found to give very poor

results.

(ii) The deconvolved FWHM derived using Gaussian fits is in

general not equal to the deconvolved FWHM derived using second

moments. Hence the conversion factors will also be different in

both cases. For second-moment deconvolution, the conversion

factor is independent of the beamsize. Its value is in all cases

equal to the conversion factor for the Gaussian deconvolution

method in the limit for infinitely large beams. The conversion

factor for second-moment deconvolution does depend on the

assumed surface brightness profile.

(iii) The conversion factor is very sensitive to the adopted

intrinsic surface brightness profile. Differences up to 40 per cent

can be found for constant emissivity shells with different inner

radii. Hence great care should be taken when making a choice for

the intrinsic surface brightness distribution.

(iv) Because of this, observers are urged to publish, besides the

StroÈmgren diameter of the nebula, the deconvolved FWHM, the

method used (i.e., Gaussian or second-moment deconvolution)

and the beamsize.

(v) The conversion factor is very sensitive to optical depth

effects, so care should be taken when comparing observations

made at different wavelengths. This is especially the case for radio

observations. Differences of several tens of per cent are possible.

(vi) For optical observations the conversion factor depends on

which emission line is chosen. This is partly due to ionization

stratification, and this results in the fact that even well-resolved

images in different emission lines can yield different diameters. It

is also caused by the fact that the intrinsic surface brightness

profile is different in different emission lines. Again differences of

several tens of per cent are possible. Hence care should be taken

when comparing optical and radio measurements.

(vii) Nebulae which have a power-law drop-off in their density

distribution usually do not have a well-defined outer edge, and the

StroÈmgren radius will be situated in the faint surface brightness

regions of the nebula. For such nebulae the conversion factor can

become very large, and it is very sensitive to the assumed intrinsic

surface brightness distribution of the nebula. Since this distribu-

tion can in general not be assessed accurately, it is not meaningful

to apply a conversion factor, and only the deconvolved FWHM

and the beamsize should be published.

Finally, in this paper a new algorithm has been presented which

allows the determination of the intrinsic FWHM of the source,

using only the observed surface brightness distribution and the

FWHM of the beam. More specifically, no assumptions with

regard to the intrinsic surface brightness distribution are needed.

This makes the method a good alternative for Gaussian decon-

volution. Tests show that the implicit deconvolution method works

well in realistic conditions, even when the signal-to-noise ratio is

low, provided that the beamsize is less than roughly 2/3 of the

observed FWHM and the beam profile can be approximated by a

Gaussian.
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