Research
Past and Current Research
My current research focusses on solar information processing and machine learning. The goal is to fully exploit the large amounts of available space solar data for an improved understanding of solar physics phenomena. This calls for the development of automated feature recognition tools and more largely for a data science that is grounded in statistics, image processing, observational expertise, and solar physics in order to access physical information in the data that is often hidden due to their dynamical range, noise, or complexity and size of the dataset.
At Rice University, I worked on distributed estimation in sensor network. The aim was to find distributed estimation algorithms that are local, scalable, energy-consumption efficient, and fault-tolerant.
My doctoral research was concerned with the construction of wavelet transforms that automatically adapt to
to the design at-hand, be it irregular, stochastic or auto-regressive.
This allows to have a fast and efficient denoising method for nonparametric regression. Univariate and bivariate irregular designs were considered.
Publications
Solar physics
- Nonparametric monitoring of sunspot number observations.(2022)
Mathieu, Sophie; Lefèvre, Laure ; von Sachs, Rainer ; Delouille, Veronique ; Ritter, Christian ; Clette, Frédéric
Journal of Quality Technology,
- Uncertainty Quantification in sunspot counts (2019)
S. Mathieu, R. von Sachs, C. Ritter, V. Delouille, L. Lefèvre
V. Delouille, S.J. Hofmeister, M.A. Reiss, B. Mampaey, M. Temmer, A. Veronig,
in The Astrophysical Journal, 886
-
The Observational Uncertainty of Coronal Hole Boundaries in Automated Detection Schemes (2021)
Reiss, Martin A.; Muglach, Karin; Moestl, Christian; Arge, Charles N.; Bailey, Rachel ; Delouille, Veronique ; Garton, Tadhg M.; Hamada, Amr; Hofmeister, Stefan; Illarionov, Egor; Jarolim, Robert; Kirk, Michael S.F.; Kosovichev, Alexander; Krista, Larisza ; Lee, Sangwoo; Lowder, Chris; MacNeice, Peter J.; Veronig, Astrid
in Astrophysical Journal Letters (ApJL)
- Coronal Holes Detection Using Supervised Classification (2018)
V. Delouille, S.J. Hofmeister, M.A. Reiss, B. Mampaey, M. Temmer, A. Veronig,
in Machine Learning Techniques for Space Weather (31 pages - Sc. Ed. Enrico Camporeale, Simon Wing and Jay R. Johnson - pp. 365-395)
- Forecasting the Arrival Time of Coronal Mass Ejections: Analysis of the CCMC CME Scoreboard (2018)
P. Riley , M.L. Mays, J. Andries, T. Amerstorfer, D. Biesecker, V. Delouille, M. Dumbovic, X. Feng, E. Henley, J.A. Linker, C. MÖstl, M. Nuñez, V. Pizzo, M. Temmer, W.K. Tobiska, C. Verbeke, M.J. West, X. Zhao.
Space Weather, vol. 16, no. 9, pp. 1245-1260
- Segmentation of photospheric magnetic elements corresponding to coronal features to understand the EUV and UV irradiance variability (2017)
J. Zender, R. Kariyappa, G. Giono, M. Bergmann, V. Delouille, L. Damé, J.F Hochedez, S.T. Kumara, Astronomy & Astrophysics, 605
- Image patch analysis of sunspots and active regions. II. Clustering via dictionary learning (2016)
K. Moon, V. Delouille, J. Li, R. De Visscher, F. Watson, A.O. Hero III
Journal of Space Weather and Space Climate, 6, pp.A3
- Image patch analysis of sunspots and active regions. I. Intrinsic dimension and correlation analysis (2016)
K. Moon, J. Li, V. Delouille, R. De Visscher, F. Watson, A.O. Hero III, Journal of Space Weather and Space Climate, 6, pp.A2
-
Non-parametric PSF estimation from celestial transit solar images using blind deconvolution (2016) A. Gonzalez, V. Delouille, L. Jacques
Journal of Space Weather and Space Climate, 6, pp.A1
- Improvements on coronal hole detection in SDO/AIA images using supervised classification (2015)
M.A. Reiss, S.J. Hofmeister, R. De Visscher, M. Temmer, A. M. Veronig, V. Delouille, B. Mampaey, H. Ahammer
Journal of Space Weather and Space Climate, 5, pp.A23
- Supervised classification of solar Features using prior information (2015) R. De Visscher, V. Delouille, P. Dupont, C. Deledalle
Journal of Space Weather and Space Climate, 5, pp.A34
- Reconstruction of the solar EUV irradiance from 1996 to 2010 based on SOHO/EIT images (2014) M. Haberreiter, B. Mampaey, V. Delouille, C. Verbeeck, S. Wieman, Journal of Space Weather and Space Climate
- Solar Spectral Irradiance Variability in November/December 2012: Comparison of Observations by Instruments on the International Space Station and Models (2014) Thuillier, G., Schmidtke, G., Erhardt, C., Nikutowski, B., Shapiro, A. I., Bolduc, C., Lean, J., Krivova, N., Charbonneau, P., Cessateur, G., Haberreiter, M., Melo, S., Delouille, V., Mampaey, B., Yeo, K. L., Schmutz, W, Solar Physics 289(12), pages 4433-4452
- Segmentation of coronal features to understand the solar EUV and UV irradiance variability (2014) S.T. Kumara, R. Kariyappa, J. Zender, G. Giono, V. Delouille, L.P. Chitta, L. Damé, J.-F. Hochedez, C. Verbeeck, B. Mampaey, V.H. Doddamani
- The SPoCA-suite: software for extraction, characterization, and tracking of Active Regions and Coronal Holes on EUV images (2014) C. Verbeeck, V. Delouille, B. Mampaey, R. De Visscher,
Astronomy & Astrophysics, 561
- Virtual super resolution of scale invariant textured images using multifractal stochastic processes (2011) P. Chainais, E. Koenig, V. Delouille, J.-F. Hochedez, Journal of Mathematical Imaging and Vision, 39(1)
- Computer Vision for the Solar Dynamics Observatory (2011) P.C.H. Martens, G. Attrill, A.R. Davey, S. Farid, P.C. Grigis, J. Kasper, K. Korreck, S.H. Saar, Y. Su, A. Savcheva, P. Testa, M. Wills-Davey, P.N. Bernasconi, M.K. Georgoulis, V. Delouille J.-F. Hochedez, J.W.. Cirtain, C.E,. DeForest, R.A. Angryk, I. De Moortel, T. Wiegelmann, Solar Physics
- Fast and robust segmentation of solar EUV images: algorithm and results for solar cycle (2009) V. Barra, V. Delouille, M. Kretzschmar, J.-F. Hochedez, Astronomy & Astrophysics, Volume 505, pages 361-371.
- Quantifying and containing the curse of high resolution coronal imaging (2008) V. Delouille, P. Chainais, J.-F. Hochedez , Annales Geophysicae, 26, 3169-3184
- Spatial and Temporal Noise
in Solar EUV Observations (2008) V. Delouille, P. Chainais, J.-F. Hochedez, Solar Physics, 248, 441-455
- Segmentation of Extreme Ultraviolet
Solar Images via Multichannel Fuzzy Clustering, (2008) V. Barra, V. Delouille, J.-F. Hochedez, Advances in Space Research, 42(5), 917-925.
- GOES-8 X-ray sensor variance
stabilization using the multiscale data-driven Haar-Fisz transform (2007) P. Fryzlewicz, V. Delouille, G.P. Nason, Journal of the
Royal Statistical Society, Series C, 56, pages 99-116.
- Wavelet spectrum analysis of EIT/SoHO images (2005) V. Delouille, J. de Patoul, J.-F. Hochedez, L. Jacques, and J.-P. Antoine, Solar Physics, 228, 301-321 .
Sensor Networks
- Robust distributed estimation using the embedded subgraphs algorithm (2006) V. Delouille, R. Neelamani, R. G. Baraniuk, IEEE Transactions on Signal Processing, 54(8), pages 2998- 3010
Wavelet methods
- Second generation wavelet denoising
methods for irregularly spaced data in two dimensions (2006) V. Delouille, M. Jansen, R. von Sachs, Signal Processing,
86(7), pages 1435 - 1450.
- Estimation of Nonlinear Autoregressive
Models using Design-adapted Wavelets (2004),
V. Delouille and R. von Sachs. Annals of the Institute of Mathematical Statistics,
57(2):235-253.
-
Smooth Design-adapted Wavelets for Nonparametric Stochastic Regression (2004)
V. Delouille, J. Simoens, and R. von Sachs. Journal of the American Statistical Association, Volume 99(467): 643-658
-
Nonparametric stochastic regression with design-adapted wavelets (.ps)
V. Delouille, J. Franke and R. von Sachs. Sankhya: The Indian Journal of Statistics. Special issue on Wavelets, Series A, 63(3):328-366, 2000.
Conference Proceedings
- Uncertainty quantification in Sunspots Counts (2018)
S. Mathieu, R.V. Sachs, V. Delouille, L. Lefevre, Proceedings of IEEE Data Science Workshop (DSW), 1-5.
- Meta learning of bounds on the Bayes classifier error (2015) K. Moon, V. Delouille, A.O. Hero III
Proceeding of IEEE Signal Processing and SP Education workshop, Snowbird UT.
- Image patch analysis and clustering of sunspots: a dimensionality reduction approach (2014) K. Moon, J. Li, V. Delouille, F. Watson, A.O. Hero III,
IEEE International Conference on Image Processing, Paris, France
- Segmentation, Tracking and Characterization of Solar Features from EIT Solar Corona Images (2009) V. Barra, V. Delouille, J.-F. Hochedez, Lecture Notes in Computer Science Volume 5575/2009, pages 199-208
- Amélioration virtuelle de la résolution d'images du Soleil par augmentation d'information invariante d'échelle (2009) E. Koenig, P. Chainais, V. Delouille, J.F. Hochefez,
Proceedings of GRETSI (Dijon)
- Modeling images of the Quiet
Sun in the extreme ultra-violet (2007), P. Chainais, V. Delouille, J.-F. Hochedez, SPIE meeting, Wavelets XII (San Diego)
- Segmentation of Extreme Ultraviolet
Solar Images using a Multispectral Data Fusion Process (2007) V. Barra, V. Delouille, J.-F. Hochedez; Proceedings of
the IEEE Conference on Fuzzy Systems, (London), pages 211-216.
- Segmentation of
EIT Images Using Fuzzy Clustering: a Preliminary Study (2005) V. Barra, V. Delouille, J.-F. Hochedez, P. Chainais, Proceedings of the 11th
European Solar Physics Meeting 'The Dynamic Sun: Challenges for Theory and
3
Observations' (ESA SP-600), Leuven, Belgium. Editors: D. Danesy, S. Poedts,
A. De Groof and J. Andries. Published on CDROM., p.77.1
-
A data-driven Haar-Fisz transform for multiscale
variance stabilization (2005) P. Fryzlewicz, V. Delouille, IEEE/SP 13th Workshop on Statistical Signal
Processing, (Bordeaux), pages 539-544.
- Robust Distributed Estimation in Sensor Networks using
the Embedded Polygons Algorithm
(2004) V. Delouille, R. Neelamani, R. Baraniuk, Third International
Symposium on Information Processing in Sensor Networks (IPSN 2004),
pages 405-413
-
The Embedded Triangles Algorithm for Distributed Estimation in Sensor Networks,
V. Delouille, R. Neelamani, V. Chandrasekaran, and R. Baraniuk
Statistical Signal Processing Workshop, September 2003.
-
Design-adapted wavelet estimator for two-dimensional tensor product irregular designs,
V. Delouille, J. Simoens, and R. von Sachs.
In M.A. Unser, A. Aldroubi, and A.F. Laine, eds., Wavelets: Applications in Signal and Image Processing X, Proceedings of SPIE vol. 5207, pp. 880-891, 2003.
PhD Thesis
-
Nonparametric stochastic regression using design-adapted wavelets
Institut de Statistique, Université catholique de Louvain, Belgium, 2002
Master Thesis
-
Nonparametric regression estimation using design-adapted wavelets
Mémoire de DEA, Institut de Statistique, Université catholique de Louvain, Belgium, 1999.
-
Bayesian Variable Selection with related predictors using the Gibbs sampler
MSc thesis, University of Kent at Canterbury, UK, 1998.
Last update: August 2017